ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Psychoneuroendocrinology
2022 Jan 19
Brix, LM;Häusl, AS;Toksöz, I;Bordes, J;van Doeselaar, L;Engelhardt, C;Narayan, S;Springer, M;Sterlemann, V;Deussing, JM;Chen, A;Schmidt, MV;
PMID: 35091292 | DOI: 10.1016/j.psyneuen.2022.105670
Nat Commun
2020 Jan 23
Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3
Nature metabolism
2023 Jan 01
Liu, H;He, Y;Bai, J;Zhang, C;Zhang, F;Yang, Y;Luo, H;Yu, M;Liu, H;Tu, L;Zhang, N;Yin, N;Han, J;Yan, Z;Scarcelli, NA;Conde, KM;Wang, M;Bean, JC;Potts, CHS;Wang, C;Hu, F;Liu, F;Xu, Y;
PMID: 36593271 | DOI: 10.1038/s42255-022-00701-x
Dis Esophagus.
2018 Jun 21
Wong MYW, Wang B, Yang A, Khor A, Xuan W, Rajendra S.
PMID: 29931323 | DOI: 10.1093/dote/doy051
Given the comparable strains of high-risk human papillomavirus (HPV) present in a subset of Barrett's dysplasia and esophageal adenocarcinoma as in head and neck squamous cell carcinomas and the anatomical proximity of both lesions, we hypothesized that oral sex may increase the risk of Barrett's dysplasia/esophageal adenocarcinoma. Therefore, we compared the sexual behavior of patients with Barrett's dysplasia/esophageal adenocarcinoma and controls (hospital, reflux, and Barrett's metaplasia) to explore a plausible mechanism of viral transmission to the lower esophagus. A hospital-based case-control study involving 36 Barrett's dysplasia/esophageal adenocarcinoma subjects and 55 controls with known HPV DNA status and markers of transcriptional activity i.e p16INK4A and E6/E7 mRNA of the esophageal epithelium was conducted to evaluate differences in sexual history (if any). Barrett's dysplasia/esophageal adenocarcinoma patients were more likely than controls to be positive for HPV DNA (18 of 36, 50% vs. 6/55, 11%, p for trend <0.0001), be male (P = 0.001) and in a relationship (P = 0.02). Viral genotypes identified were HPV 16 (n = 14), 18 (n = 2), 11 (n = 1) and 6 (n = 1). HPV exposure conferred a significantly higher risk for Barrett's dysplasia/esophageal adenocarcinoma as compared with hospital/reflux/Barrett's metaplasia controls (OR = 6.8, 95% CI: 2.1-23.1, adjusted P = 0.002). On univariate analysis, ≥6 lifetime oral sex partners were significantly associated with dysplastic Barrett's esophagus and adenocarcinoma (OR, 4.0; 95% CI: 1.2-13.7, P = 0.046). After adjustment for confounders, HPV exposure and men with ≥2 lifetime sexual partners were at significant risk for Barrett's dysplasia/esophageal adenocarcinoma. If these initial findings can be confirmed in larger studies, it could lead to effective prevention strategies in combating some of the exponential increase in the incidence of esophageal adenocarcinoma in the West.
Int J Mol Sci.
2018 Mar 16
Ilardi G, Russo D, Varricchio S, Salzano G, Dell'Aversana Orabona G, Napolitano V, Di Crescenzo RM, Borzillo A, Martino F, Merolla F, Mascolo M, Staibano S.
PMID: 29547549 | DOI: 10.3390/ijms19030883
Human Papilloma Virus (HPV) can play a causative role in the development of sinonasal tract malignancies. In fact, HPV may be the most significant causative agent implicated in sinonasal tumorigenesis and is implicated in as many as 21% of sinonasal carcinomas. To date, there are no definitive, reliable and cost-effective, diagnostic tests approved by the FDA for the unequivocal determination of HPV status in head and neck cancers. We followed an exhaustive algorithm to correctly test HPV infection, including a sequential approach with p16INK4a IHC, viral DNA genotyping and in situ hybridization for E6/E7 mRNA. Here, we report a case of sinonasal carcinoma with discordant results using HPV test assays. The tumor we describe showed an irregular immunoreactivity for p16INK4a, and it tested positive for HPV DNA; nevertheless, it was negative for HR-HPV mRNA. We discuss the possible meaning of this discrepancy. It would be advisable to test HPV transcriptional status of sinonasal carcinoma on a diagnostic routine basis, not only by p16INK4a IHC assay, but also by HPV DNA genotyping and HR-HPV mRNA assessment.
J Pharmacol Exp Ther.
2016 Feb 22
Sushchyk SA, Xi ZX, Wang JB.
PMID: 26903543 | DOI: -
Relapse to drug use is often cited as the major obstacle in overcoming a drug addiction. While relapse can occurs for a myriad of reasons it is well established the complex neuroadaptations, which occur over the course of addiction, are major factors. Cocaine, as a potent dopamine transporter blocker, specifically induces alterations in the dopaminergic as well as other monoaminergic neurotransmissions, which lead to cocaine abuse and dependence. Evidence also suggests that adaptations in the endogenous opioids play important roles in pathophysiology of cocaine addiction. Following this evidence, we investigated a combination medication, levo-tetrahydropalmatine (l-THP) and low dose naltrexone (LDN), targeting primarily dopaminergic and endogenous opioid systems as a cocaine relapse prevention treatment. In the present study Wistar rats were used to assess the effects of l-THP and LDN on cocaine self-administration, drug-seeking behavior during cocaine reinstatement, spontaneous locomotion, and effects on the endogenous opioid system. We determine the combination of l-THP and LDN reduces drug-seeking behavior during reinstatement potently than l-THP alone. Additionally, the combination of l-THP and LDN attenuates the sedative locomotor effect induced by l-THP. Furthermore, we revealed that treatment with the combination of l-THP and LDN has an upregulatory effect on both plasma β-endorphin and hypothalamic POMC that was not observed in l-THP-treated groups. These results suggest that the combination of l-THP and LDN has great potential as an effective and well-tolerated medication for cocaine relapse prevention.
Endocrine Abstracts
2022 May 07
Leon, S;Simon, V;Lee, T;Clark, S;Dupuy, N;Le, F;Fioramonti, X;Cota, D;Quarta, C;
| DOI: 10.1530/endoabs.81.oc10.1
Nutrients
2021 Sep 03
Peris-Sampedro, F;Stoltenborg, I;Le May, MV;Sole-Navais, P;Adan, RAH;Dickson, SL;
PMID: 34578979 | DOI: 10.3390/nu13093101
Elife.
2017 Jun 20
Paeger L, Karakasilioti I, Altmüller J, Frommolt P, Brüning J, Kloppenburg P.
PMID: 28632132 | DOI: 10.7554/eLife.25770
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and β- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.
Nat Commun
2020 Apr 20
Park S, Aintablian A, Coupe B, Bouret SG
PMID: 32313051 | DOI: 10.1038/s41467-020-15624-y
Nature communications
2021 May 13
Hunt, C;Hartford, SA;White, D;Pefanis, E;Hanna, T;Herman, C;Wiley, J;Brown, H;Su, Q;Xin, Y;Voronin, D;Nguyen, H;Altarejos, J;Crosby, K;Haines, J;Cancelarich, S;Drummond, M;Moller-Tank, S;Malpass, R;Buckley, J;Del Pilar Molina-Portela, M;Droguett, G;Frendewey, D;Chiao, E;Zambrowicz, B;Gong, G;
PMID: 33986266 | DOI: 10.1038/s41467-021-22932-4
Diabetes
2019 Apr 01
Ratner C, He Z, Grunddal KV, Skov LJ, Hartmann B, Zhang F, Feuchtinger A, Bjerregaard A, Christoffersen C, Tschöp MH, Finan B, DiMarchi RD, Leinninger GM, Williams KW, Clemmensen C, Holst B.
PMID: 30936142 | DOI: 10.2337/db18-1009
Neurotensin, a gut hormone and neuropeptide, increases in circulation after bariatric surgery in rodents and humans and inhibits food intake in mice. However, its potential to treat obesity and the subsequent metabolic dysfunctions have been difficult to assess owing to its short half-life in vivo Here, we demonstrate that a long acting, pegylated analogue of the neurotensin peptide (P-NT) reduces food intake, body weight and adiposity in diet-induced obese (DIO) mice when administered once daily for 6 days. Strikingly, when P-NT was combined with the GLP-1 mimetic liraglutide the two peptides synergized to reduce food intake and body weight relative to each mono-therapy, without inducing a taste aversion. Further, P-NT and liraglutide co-administration improved glycemia and reduced steatohepatitis. Finally, we show that the melanocortin pathway is central for P-NT-induced anorexia and necessary for the full synergistic effect of P-NT and liraglutide combination-therapy. Overall, our data suggest that P-NT and liraglutide combination-therapy could be an enhanced treatment for obesity with improved tolerability compared to liraglutide mono-therapy.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com