ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Acta neuropathologica communications
2021 May 25
Li, Y;Shi, S;Xia, F;Shan, C;Ha, Y;Zou, J;Adam, A;Zhang, M;Wang, T;Liu, H;Shi, PY;Zhang, W;
PMID: 34034828 | DOI: 10.1186/s40478-021-01195-6
Molecular metabolism
2022 Feb 12
Qi, Y;Lee, NJ;Ip, CK;Enriquez, R;Tasan, R;Zhang, L;Herzog, H;
PMID: 35167990 | DOI: 10.1016/j.molmet.2022.101455
JAMA Network Open
2018 Aug 03
Rajendra S, Xuan W, Merrett N, Sharma P, Sharma P, Pavey D, Yang T, Santos LD, Sharaiha O, Pande G, Peter Cosman P, Wu X, Wang B.
PMID: - | DOI: 10.1001/jamanetworkopen.2018.1054
Abstract
Importance
High-risk human papillomavirus (HPV) has been associated with Barrett dysplasia and esophageal adenocarcinoma. Nevertheless, the prognostic significance of esophageal tumor HPV status is unknown.
Objective
To determine the association between HPV infection and related biomarkers in high-grade dysplasia or esophageal adenocarcinoma and survival.
Design, Setting, and Participants
Retrospective case-control study. The hypothesis was that HPV-associated esophageal tumors would show a favorable prognosis (as in viral-positive head and neck cancers). Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction, in situ hybridization for E6 and E7 messenger RNA (mRNA), and immunohistochemistry for the proteins p16INK4A and p53. Sequencing of TP53 was also undertaken. The study took place at secondary and tertiary referral centers, with 151 patients assessed for eligibility and 9 excluded. The study period was from December 1, 2002, to November 28, 2017.
Main Outcomes and Measures
Disease-free survival (DFS) and overall survival (OS).
Results
Among 142 patients with high-grade dysplasia or esophageal adenocarcinoma (126 [88.7%] male; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. Patients who were HPV positive mostly had high p16INK4A expression, low p53 expression, and wild-type TP53. There were more Tis, T1, and T2 tumors in HPV-positive patients compared with HPV-negative patients (75.7% vs 54.3%; difference, 21.4%; 95% CI, 4.6%-38.2%; P = .02). Mean DFS was superior in the HPV-positive group (40.3 vs 24.1 months; difference, 16.2 months; 95% CI, 5.7-26.8; P = .003) as was OS (43.7 vs 29.8 months; difference, 13.9 months; 95% CI, 3.6-24.3; P = .009). Recurrence or progression was reduced in the HPV-positive cohort (24.3% vs 58.1%; difference, −33.8%; 95% CI, −50.5% to −17.0%; P < .001) as was distant metastasis (8.1% vs 27.6%; difference, −19.5%; 95% CI, −31.8% to −7.2%; P = .02) and death from esophageal adenocarcinoma (13.5% vs 36.2%; difference, −22.7%; 95% CI, −37.0% to −8.3%; P = .01). Positive results for HPV and transcriptionally active virus were both associated with a superior DFS (hazard ratio [HR], 0.33; 95% CI, 0.16-0.67; P = .002 and HR, 0.44; 95% CI, 0.22-0.88; P = .02, respectively [log-rank test]). Positivity for E6 and E7 mRNA, high p16INK4Aexpression, and low p53 expression were not associated with improved DFS. On multivariate analysis, superior DFS was demonstrated for HPV (HR, 0.39; 95% CI, 0.18-0.85; P = .02), biologically active virus (HR, 0.36; 95% CI, 0.15-0.86; P = .02), E6 and E7 mRNA (HR, 0.36; 95% CI, 0.14-0.96; P = .04), and high p16 expression (HR, 0.49; 95% CI, 0.27-0.89; P = .02).
Conclusions and Relevance
Barrett high-grade dysplasia and esophageal adenocarcinoma in patients who are positive for HPV are distinct biological entities with a favorable prognosis compared with viral-negative esophageal tumors. Confirmation of these findings in larger cohorts with more advanced disease could present an opportunity for treatment de-escalation in the hope of reducing toxic effects without deleteriously affecting survival.
PLoS Negl Trop Dis.
2017 Jul 03
Dowall SD, Graham VA, Rayner E, Hunter L, Atkinson B, Pearson G, Dennis M, Hewson R.
PMID: 28672028 | DOI: 10.1371/journal.pntd.0005704
Zika virus (ZIKV) falls into two lineages: African (ZIKVAF) and Asian (ZIKVAS). These lineages have not been tested comprehensively in parallel for disease progression using an animal model system. Here, using the established type-I interferon receptor knockout (A129) mouse model, it is first demonstrated that ZIKVAF causes lethal infection, with different kinetics of disease manifestations according to the challenge dose. Animals challenged with a low dose of 10 plaque-forming units (pfu) developed more neurological symptoms than those challenged with 5-log higher doses. By contrast, animals challenged with ZIKVAS displayed no clinical signs or mortality, even at doses of 106 pfu. However, viral RNA was detected in the tissues of animals infected with ZIKV strains from both lineages and similar histological changes were observed. The present study highlights strain specific virulence differences between the African and Asian lineages in a ZIKV mouse model.
Nat. Commun.
2018 Jun 20
Coffey LL, Keesler RI, Pesavento PA, Woolard K, Singapuri A, Watanabe J, Cruzen C, Christe KL, Usachenko J, Yee JA, Heng VA, Bliss-Moreau E, Reader JR, von Morgenland W, Gibbons AM, Jackson K, Ardeshir A, Heimsath H, Permar S, Senthamaraikannan P, Presicc
PMID: - | DOI: 10.1038/s41467-018-04777-6
Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.
Neuron
2020 Apr 15
Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, Mykytiuk V, Widdershooven PJM, Vesting AJ, Grzelka K, Min�re M, Cremer AL, Xu J, Korotkova T, Lowell BB, Zeilhofer HU, Backes H, Fenselau H, Wunderlich FT, Kloppenburg P, Br�ning JC
PMID: 32302532 | DOI: 10.1016/j.neuron.2020.03.022
Chinese journal of pathology
2019 Feb 02
Zhao YH, Bai YP, Mao ML, Zhang H, Zhao XL, Yang DM, Wan HF, Liu HG.
PMID: 30695865 | DOI: 10.3760/cma.j.issn.0529-5807.2019.02.010
Objective: To observe the clinicopathologic features of oropharyngeal squamous cell carcinoma associated with human papilloma virus (OPSCC-HPV) and discuss the role and value of different in situ hybridization (ISH) detection methods for HPV in pathologic diagnosis. Methods: Fifteen cases of OPSCC-HPV were collected from Department of Pathology, Beijing Tongren Hospital, Capital Medical University from January 2016 to August 2018. These cases were diagnosed in accordance with the WHO classification of head and neck tumors. The histopathologic features and the clinicopathologic data were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of p16, Ki-67 and p53. ISH was used to detect HPV DNA (6/11 and 16/18). RNAscope technology was used to evaluate the presence of HPV mRNAs (16 and 18). Results: The mean age for the 15 patients (8 males, 7 females) was 47 years (range from 30 to 69 years). OPSCC-HPV typically presentedat an advanced clinical stage, six patients had cervical lymphadenopathy (large and cystic), seven had tonsillar swelling, one had tumor at base of tongue, and one had odynophagia. Microscopically the tumors exhibited distinctive non-keratinizing squamous cell carcinoma morphology. Cervical nodal metastases were large and cystic, with thickening of lymph node capsules. OPSCC-HPV raised from crypt epithelium and extended beneath the tonsillar surface epithelial lining as nests and lobules, often with central necrosis. Tumor cells displayed a high N: C ratio, and high mitotic and apoptotic rates. Tumor nests are often embedded within lymphoid stroma, and may be infiltrated by lymphoid cells.Fifteen cases (15/15) were strongly positive for p16; Ki-67 index were 60%-90%; they were focally positive or negative for p53. Ten cases (10/10) were negative for HPV 6/11 DNA, and one case(1/10) was focally positive for HPV16/18 DNA. Eleven cases (11/11) were strongly positive for HPV16 mRNA, one case was focally positive for HPV18 mRNA. Conclusions: OPSCC-HPV is a pathologically and clinically distinct form of head and neck squamous cell carcinoma. OPSCC-HPV is associated with high-risk HPV (type 16) in all cases. Detection of high-risk HPV16 mRNA by RNAscope is of great significance in the final diagnosis and pathogen identification.
Nature.
2016 Nov 07
Sapparapu G, Fernandez E, Kose N, Cao B, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE.
PMID: 27819683 | DOI: 10.1038/nature20564
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy1. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies (mAbs) from subjects with prior ZIKV infection. A subset of mAbs recognized diverse epitopes on the envelope (E) protein and exhibited potently neutralizing activity. One of the most inhibitory mAbs, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African, Asian, and American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. mAb treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human mAbs can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.
Nature neuroscience
2021 May 17
Biglari, N;Gaziano, I;Schumacher, J;Radermacher, J;Paeger, L;Klemm, P;Chen, W;Corneliussen, S;Wunderlich, CM;Sue, M;Vollmar, S;Klöckener, T;Sotelo-Hitschfeld, T;Abbasloo, A;Edenhofer, F;Reimann, F;Gribble, FM;Fenselau, H;Kloppenburg, P;Wunderlich, FT;Brüning, JC;
PMID: 34002087 | DOI: 10.1038/s41593-021-00854-0
eLife
2022 Jan 19
Yu, H;Rubinstein, M;Low, MJ;
PMID: 35044906 | DOI: 10.7554/eLife.72883
PLoS Negl Trop Dis.
2017 Jan 09
Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K, Bocan T, Koehler JW, Coyne S, Minogue T, Kenny T, Chi X, Yim S, Miller L, Schmaljohn C, Bavari S, Golden JW.
PMID: 28068342 | DOI: 10.1371/journal.pntd.0005296
Animal models are needed to better understand the pathogenic mechanisms of Zika virus (ZIKV) and to evaluate candidate medical countermeasures. Adult mice infected with ZIKV develop a transient viremia, but do not demonstrate signs of morbidity or mortality. Mice deficient in type I or a combination of type I and type II interferon (IFN) responses are highly susceptible to ZIKV infection; however, the absence of a competent immune system limits their usefulness for studying medical countermeasures. Here we employ a murine model for ZIKV using wild-type C57BL/6 mice treated with an antibody to disrupt type I IFN signaling to study ZIKV pathogenesis. We observed 40% mortality in antibody treated mice exposed to ZIKV subcutaneously whereas mice exposed by intraperitoneal inoculation were highlysusceptible incurring 100% mortality. Mice infected by both exposure routes experienced weight loss, high viremia, and severe neuropathologic changes. The most significant histopathological findings occurred in the central nervous system where lesions represent an acute to subacute encephalitis/encephalomyelitis that is characterized by neuronal death, astrogliosis, microgliosis, scattered necrotic cellular debris, and inflammatory cell infiltrates. This model of ZIKV pathogenesis will be valuable for evaluating medical countermeasures and the pathogenic mechanisms of ZIKV because it allows immune responses to be elicited in immunologically competent mice with IFN I blockade only induced at the time of infection.
Elife.
2015 Sep 02
Henry FE, Sugino K, Tozer A, Branco T, Sternson SM.
PMID: 26329458 | DOI: 10.7554/eLife.09800.
Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed POMC neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com