Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (4602)
  • Kits & Accessories (58)
  • Support & Documents (0)
  • Publications (6996)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (1106) Apply Mouse filter
  • Human (988) Apply Human filter
  • Other (359) Apply Other filter
  • Zebrafish (267) Apply Zebrafish filter
  • Human herpesvirus (99) Apply Human herpesvirus filter
  • Langat virus (65) Apply Langat virus filter
  • Powassan virus (64) Apply Powassan virus filter
  • Monkey (59) Apply Monkey filter
  • Cloning vector (38) Apply Cloning vector filter
  • Rhincodon typus (36) Apply Rhincodon typus filter
  • Pig (33) Apply Pig filter
  • Influenza virus (33) Apply Influenza virus filter
  • Lassa virus (33) Apply Lassa virus filter
  • synthetic construct (33) Apply synthetic construct filter
  • Hepacivirus (32) Apply Hepacivirus filter
  • Oryzias latipes (32) Apply Oryzias latipes filter
  • Gekko japonicus (32) Apply Gekko japonicus filter
  • Phocoenid herpesvirus (32) Apply Phocoenid herpesvirus filter
  • Newcastle disease virus (32) Apply Newcastle disease virus filter
  • Gadus morhua (32) Apply Gadus morhua filter
  • Measles virus (31) Apply Measles virus filter
  • Felis catus (27) Apply Felis catus filter
  • Astyanax mexicanus (21) Apply Astyanax mexicanus filter
  • Other virus (3) Apply Other virus filter

Gene

  • TBD (1413) Apply TBD filter
  • INS (192) Apply INS filter
  • dazl (178) Apply dazl filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • DISC1 (109) Apply DISC1 filter
  • Dmbt1 (109) Apply Dmbt1 filter
  • Hic1 (108) Apply Hic1 filter
  • NFKBIZ (91) Apply NFKBIZ filter
  • Gad1 (90) Apply Gad1 filter
  • Nfkb1 (80) Apply Nfkb1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • Ikbke (74) Apply Ikbke filter
  • FOS (73) Apply FOS filter
  • GREB1 (73) Apply GREB1 filter
  • NFKB2 (73) Apply NFKB2 filter
  • PRAME (72) Apply PRAME filter
  • ALPP (71) Apply ALPP filter
  • Powassan (71) Apply Powassan filter
  • Langat (70) Apply Langat filter
  • 16SrRNA (69) Apply 16SrRNA filter
  • MACC1 (67) Apply MACC1 filter
  • Aim2 (66) Apply Aim2 filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • GEM (63) Apply GEM filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PACSIN3 (48) Apply PACSIN3 filter
  • RER1 (48) Apply RER1 filter
  • SPIDR (48) Apply SPIDR filter
  • SPRING1 (48) Apply SPRING1 filter
  • PVALB (47) Apply PVALB filter
  • BFSP1 (47) Apply BFSP1 filter
  • egfp (46) Apply egfp filter
  • DCC (46) Apply DCC filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • DLC1 (41) Apply DLC1 filter
  • Greb1l (40) Apply Greb1l filter
  • GFAP (39) Apply GFAP filter
  • ERG11 (39) Apply ERG11 filter

Platform

  • Manual Assay RNAscope HiPlex (1454) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (496) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (311) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (158) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay miRNAscope (41) Apply Manual Assay miRNAscope filter
  • Manual Assay BaseScope (40) Apply Manual Assay BaseScope filter
  • Automated Assay for Leica Systems - miRNAscope (27) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (19) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (19) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (10) Apply Automated Assay for Ventana Systems - miRNAscope filter

Channel

  • 1 (489) Apply 1 filter
  • 2 (440) Apply 2 filter
  • 3 (292) Apply 3 filter
  • 4 (284) Apply 4 filter
  • 6 (136) Apply 6 filter
  • 5 (98) Apply 5 filter

HiPlex Channel

  • T10 (243) Apply T10 filter
  • T1 (242) Apply T1 filter
  • T11 (242) Apply T11 filter
  • T12 (242) Apply T12 filter
  • T2 (235) Apply T2 filter
  • T4 (235) Apply T4 filter
  • T6 (235) Apply T6 filter
  • T7 (235) Apply T7 filter
  • T8 (235) Apply T8 filter
  • T3 (234) Apply T3 filter
  • T9 (234) Apply T9 filter
  • T5 (232) Apply T5 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1023) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (968) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (720) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (695) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (292) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • TBD (183) Apply TBD filter
  • RNAscope 2.5 HD Duplex (158) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (104) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (96) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (90) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (12) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (11) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1826) Apply Neuroscience filter
  • Cancer (1368) Apply Cancer filter
  • Development (494) Apply Development filter
  • Inflammation (466) Apply Inflammation filter
  • Other (406) Apply Other filter
  • Infectious Disease (405) Apply Infectious Disease filter
  • Stem Cells (254) Apply Stem Cells filter
  • Covid (232) Apply Covid filter
  • Infectious (218) Apply Infectious filter
  • HPV (186) Apply HPV filter
  • lncRNA (133) Apply lncRNA filter
  • Metabolism (90) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (76) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (65) Apply Other: Methods filter
  • CGT (62) Apply CGT filter
  • HIV (62) Apply HIV filter
  • Pain (61) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (44) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (39) Apply Other: Heart filter
  • Reproduction (36) Apply Reproduction filter
  • Endocrinology (33) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Kidney (26) Apply Kidney filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Other: Zoological Disease (19) Apply Other: Zoological Disease filter
  • Regeneration (19) Apply Regeneration filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Fibrosis (16) Apply Fibrosis filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Liver (16) Apply Other: Liver filter
  • Injury (15) Apply Injury filter
  • Other: Skin (15) Apply Other: Skin filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (1030) Apply Target Probes filter
  • 38322 (8) Apply 38322 filter
  • Automated Assay 2.5: Leica System (7) Apply Automated Assay 2.5: Leica System filter
  • Control Probe - Automated Leica Multiplex (7) Apply Control Probe - Automated Leica Multiplex filter
  • Manual Assay RNAscope Multiplex (3) Apply Manual Assay RNAscope Multiplex filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • Control Probe- Manual RNAscope Multiplex (3) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe- Manual RNAscope HiPlex (3) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (2) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Manual Assay RNAscope Duplex (2) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay BaseScope Red (2) Apply Manual Assay BaseScope Red filter
  • Manual Assay miRNAscope Red (2) Apply Manual Assay miRNAscope Red filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • IA: Other Accessories (1) Apply IA: Other Accessories filter
  • Control Probe - Manual BaseScope Singleplex (1) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - Automated Leica (1) Apply Control Probe - Automated Leica filter
  • Control Probe - LS BaseScope Singleplex (1) Apply Control Probe - LS BaseScope Singleplex filter
  • IA: Other (1) Apply IA: Other filter
  • Control Probe - VS BaseScope Singleplex (1) Apply Control Probe - VS BaseScope Singleplex filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter

Sample Compatibility

  • Cell pellets (22) Apply Cell pellets filter
  • FFPE (22) Apply FFPE filter
  • TMA (16) Apply TMA filter
  • Fixed frozen tissue (14) Apply Fixed frozen tissue filter
  • Adherent cells (13) Apply Adherent cells filter
  • Fresh frozen tissue (9) Apply Fresh frozen tissue filter
  • Cell Cultures (9) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (6) Apply TMA(Tissue Microarray) filter
  • Freshfrozen tissue (5) Apply Freshfrozen tissue filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (5) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (3) Apply CTC filter
  • PBMC's (3) Apply PBMC's filter

Category

  • Publications (6996) Apply Publications filter

Application

  • Cancer (620) Apply Cancer filter
  • Cancer, Neuroscience (331) Apply Cancer, Neuroscience filter
  • Neuroscience (176) Apply Neuroscience filter
  • Non-coding RNA (126) Apply Non-coding RNA filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (60) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation (31) Apply Cancer, Inflammation filter
  • Inflammation (26) Apply Inflammation filter
  • 1442 (24) Apply 1442 filter
  • Stem Cell (20) Apply Stem Cell filter
  • 20 (8) Apply 20 filter
  • Cancer,Neuroscience (4) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (1) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
Functional and Developmental Heterogeneity of Pituitary Lactotropes in Medaka

SSRN Electronic Journal

2022 Jun 29

Royan, M;Siddique, K;Nourizadeh-lillabadi, R;Weltzien, F;Henkel, C;FONTAINE, R;
| DOI: 10.2139/ssrn.4142092

In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope populations have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these extra populations are not known. We recently described two distinct prolactin-expressing cell types in Japanese medaka, a salinity tolerant fish, using single cell transcriptomics. In this study, we thus characterize the two transcriptomically distinct lactotrope cell types and explore the hypothesis that they represent the spatially distinct cell populations found in other species. Single cell RNA sequencing shows that one of the two lactotrope cell types exhibits an expression profile similar to that of stem cell populations. Using in situ hybridization, we show that the medaka pituitary often develops additional small satellite lactotrope cell groups, like in other teleost species. These satellite clusters arise early during development and grow in cell number throughout life regardless of the animal’s sex. Surprisingly, there seems to be no correspondence between the stem cell-like lactotropes and these newly emerging lactotrope populations. Instead, our data support a scenario in which the stem cell-like lactotropes are an intrinsic stage in the development of every spatially distinct lactotrope cluster. In addition, lactotrope activity in the medaka pituitary decreases when environmental salinity increases in the two spatially distinct lactotrope clusters, supporting their role in osmoregulation. However, this decrease appears weaker in the satellite lactotrope cell groups, suggesting that these lactotropes are differentially regulated.
Characterization of the expression of gastrin-releasing peptide and its receptor in the trigeminal and spinal somatosensory systems of Japanese macaque monkeys: Insight into humans

The Journal of comparative neurology

2022 Jun 10

Takanami, K;Oti, T;Kobayashi, Y;Hasegawa, K;Ito, T;Tsutsui, N;Ueda, Y;Carstens, E;Sakamoto, T;Sakamoto, H;
PMID: 35686563 | DOI: 10.1002/cne.25376

Gastrin-releasing peptide (GRP) and its receptor (GRPR) have been identified as itch mediators in the spinal and trigeminal somatosensory systems in rodents. In primates, there are few reports of GRP/GRPR expression or function in the spinal sensory system and virtually nothing is known in the trigeminal system. The aim of the present study was to characterize GRP and GRPR in the trigeminal and spinal somatosensory system of Japanese macaque monkeys (Macaca fuscata). cDNA encoding GRP was isolated from the macaque dorsal root ganglion (DRG) and exhibited an amino acid sequence that was highly conserved among mammals and especially in primates. Immunohistochemical analysis demonstrated that GRP was expressed mainly in the small-sized trigeminal ganglion and DRG in adult macaque monkeys. Densely stained GRP-immunoreactive (ir) fibers were observed in superficial layers of the spinal trigeminal nucleus caudalis (Sp5C) and the spinal cord. In contrast, GRP-ir fibers were rarely observed in the principal sensory trigeminal nucleus and oral and interpolar divisions of the spinal trigeminal nucleus. cDNA cloning, in situ hybridization, and Western blot revealed substantial expression of GRPR mRNA and GRPR protein in the macaque spinal dorsal horn and Sp5C. Our Western ligand blot and ligand derivative stain for GRPR revealed that GRP directly bound in the macaque Sp5C and spinal dorsal horn as reported in rodents. Finally, GRP-ir fibers were also detected in the human spinal dorsal horn. The spinal and trigeminal itch neural circuits labeled with GRP and GRPR appear to function also in primates.
Connexin mRNA distribution in adult mouse kidneys

Pflugers Archiv : European journal of physiology

2021 Aug 07

Geis, L;Boudriot, FF;Wagner, C;
PMID: 34365513 | DOI: 10.1007/s00424-021-02608-0

Kidneys are thought to express eight different connexin isoforms (i.e., Cx 26, 30, 32, 37, 40, 43, 45, and 46), which form either hemichannels or gap junctions serving to intercellular communication and functional synchronization. Proper function of connexins has already been shown to be crucial for regulation of renal hemodynamics and renin secretion, and there is also growing evidence for connexins to play a role in pathologic conditions such as renal fibrosis or diabetic nephropathy. Therefore, exact intrarenal localization of the different connexin isoforms gains particular interest. Until now intrarenal expression of connexins has mainly been examined by immunohistochemistry, which in part generated conflicting results depending on antibodies and fixation protocols used. In this work, we used fluorescent RNAscope as an alternative technical approach to localize renal connexin mRNAs in healthy mouse kidneys. Addition of RNAscope probes for cell type specific mRNAs was used to assign connexin mRNA signals to specific cell types. We hereby found Cx26 mRNA strongly expressed in proximal tubules, Cx30 mRNA was selectively detected in the urothelium, and Cx32 mRNA was found in proximal tubules and to a lesser extent also in collecting ducts. Cx37 mRNA was mainly associated with vascular endothelium, Cx40 mRNA was largely found in glomerular mesangial and less in vascular endothelial cells, Cx43 mRNA was sparsely expressed by interstitial cells of all kidney zones, and Cx45 mRNA was predominantly found in smooth muscle cell layers of both blood vessels and ureter as well as in mesangial and interstitial (fibroblastic) cells. Cx46 mRNA could not be detected. In summary our results essentially confirm previous data on connexin expression in the renal vasculature and in glomeruli. In addition, they demonstrate strong connexin gene expression in proximal tubules, and they suggest significant connexin expression in resident tubulointerstitial cells.
Spillover of Canine Parvovirus Type 2 to Pigs, South Dakota, USA, 2020

Emerging infectious diseases

2022 Feb 01

Temeeyasen, G;Sharafeldin, TA;Lin, CM;Hause, BM;
PMID: 35076011 | DOI: 10.3201/eid2802.211681

In 1978, canine parvovirus type 2 originated from spillover of a feline panleukopenia-like virus, causing a worldwide pandemic of enteritis and myocarditis among canids. In 2020, the virus was identified in pigs in South Dakota, USA, by PCR, sequencing, in situ hybridization, and serology. Genetic analysis suggests spillover from wildlife.
Keratinocytes activated by IL-4/IL-13 express IL-2Rγ with consequences on epidermal barrier function

Experimental dermatology

2023 Jan 16

Progneaux, A;Evrard, C;De Glas, V;Fontaine, A;Dotreppe, C;De Vuyst, E;Nikkels, AF;García-González, V;Dumoutier, L;Lambert de Rouvroit, C;Poumay, Y;
PMID: 36645024 | DOI: 10.1111/exd.14749

Atopic dermatitis (AD) is a Th2-type inflammatory disease characterized by an alteration of epidermal barrier following the release of IL-4 and IL-13. These cytokines activate type II IL-4Rα/IL-13Rα1 receptors in the keratinocyte. Whilst IL-2Rγ, that forms type I receptor for IL-4, is only expressed in haematopoietic cells, recent studies suggest its induction in keratinocytes, which questions about its role. We studied expression of IL-2Rγ in keratinocytes and its role in alteration of keratinocyte function and epidermal barrier. IL-2Rγ expression in keratinocytes was studied using both reconstructed human epidermis (RHE) exposed to IL-4/IL-13 and AD skin. IL-2Rγ induction by type II receptor has been analyzed using JAK inhibitors and RHE knockout (KO) for IL13RA1. IL-2Rγ function was investigated in RHE KO for IL2RG. In RHE, IL-4/IL-13 induce expression of IL-2Rγ at the mRNA and protein levels. Its mRNA expression is also visualized in keratinocytes of lesional AD skin. IL-2Rγ expression is low in RHE treated with JAK inhibitors and absent in RHE KO for IL13RA1. Exposure to IL-4/IL-13 alters epidermal barrier, but this alteration is absent in RHE KO for IL2RG. A more important induction of IL-13Rα2 is reported in RHE KO for IL2RG than in not edited RHE. These results demonstrate IL-2Rγ induction in keratinocytes through activation of type II receptor. IL-2Rγ is involved in the alteration of the epidermal barrier and in the regulation of IL-13Rα2 expression. Observation of IL-2Rγ expression by keratinocytes inside AD lesional skin suggests a role for this receptor subunit in the disease.
JAK1 Inhibition during CAR T-Cell Treatment Does Not Affect CAR T-Cell Proliferation, Persistence, or Function

Blood

2022 Nov 15

Pratta, M;Burke, L;DiPersio, J;Maziarz, R;Feldman, P;Brodeur, T;Timmers, C;Ivanova, O;Barbour, A;Morariu-Zamfir, R;Frigault, M;
| DOI: 10.1182/blood-2022-169382

PRATTA:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. BURKE:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. DIPERSIO:_BioLineRx, Ltd.:_ Research Funding; _Macrogenics:_ Research Funding; _NeoImmune Tech:_ Research Funding; _Amphivena Therapeutics:_ Research Funding; _hC Bioscience, Inc.:_ Membership on an entity's Board of Directors or advisory committees; _RiverVest Venture Partners:_ Consultancy, Membership on an entity's Board of Directors or advisory committees; _Incyte:_ Consultancy, Research Funding; _WUGEN:_ Current equity holder in private company, Research Funding; _CAR-T cell Product with Washington University and WUGEN:_ Patents & Royalties; _VLA-4 Inhibitor with Washington University and Magenta Therapeutics:_ Patents & Royalties; _Magenta Therapeutics:_ Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees. MAZIARZ:_ASTCT:_ Membership on an entity's Board of Directors or advisory committees; _CRISPR Therapeutics:_ Consultancy, Honoraria; _Novartis:_ Other: Support for research on CART; _Allovir:_ Other: Support for research on Allo HCT costs of care of infectious related complications; _Orca Bio:_ Other: Support for research analysis and for medical writing. FELDMAN:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. BRODEUR:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. TIMMERS:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. IVANOVA:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. BARBOUR:_Incyte Corporation:_ Ended employment in the past 24 months; _Karyopharm:_ Current Employment, Current equity holder in publicly-traded company. MORARIU-ZAMFIR:_Incyte Corporation:_ Current Employment, Current equity holder in private company, Current holder of _stock options_ in a privately-held company. FRIGAULT:_Cytoagents:_ Consultancy; _Iovance:_ Consultancy; _Novartis:_ Consultancy, Research Funding; _Kite/Gilead:_ Consultancy, Research Funding; _Arcellx:_ Research Funding; _JnJ/Legend:_ Consultancy; _BMS:_ Consultancy.
Intercellular Arc Signaling Regulates Vasodilation

The Journal of neuroscience : the official journal of the Society for Neuroscience

2021 Jul 29

de la Peña, JB;Barragan-Iglesias, P;Lou, TF;Kunder, N;Loerch, S;Shukla, T;Basavarajappa, L;Song, J;James, DN;Megat, S;Moy, JK;Wanghzou, A;Ray, PR;Hoyt, K;Steward, O;Price, TJ;Shepherd, J;Campbell, ZT;
PMID: 34326146 | DOI: 10.1523/JNEUROSCI.0440-21.2021

Injury responses require communication between different cell types in the skin. Sensory neurons contribute to inflammation and can secrete signaling molecules that affect non-neuronal cells. Despite the pervasive role of translational regulation in nociception, the contribution of activity-dependent protein synthesis to inflammation is not well understood. To address this problem, we examined the landscape of nascent translation in murine dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We identified the activity-dependent gene, Arc, as a target of translation in vitro and in vivo Inflammatory cues promote local translation of Arc in the skin. Arc-deficient male mice display exaggerated paw temperatures and vasodilation in response to an inflammatory challenge. Since Arc has recently been shown to be released from neurons in extracellular vesicles (EVs), we hypothesized that intercellular Arc signaling regulates the inflammatory response in skin. We found that the excessive thermal responses and vasodilation observed in Arc defective mice are rescued by injection of Arc-containing EVs into the skin. Our findings suggest that activity-dependent production of Arc in afferent fibers regulates neurogenic inflammation potentially through intercellular signaling.SIGNIFICANCE STATEMENTNociceptors play prominent roles in pain and inflammation. We examined rapid changes in the landscape of nascent translation in cultured dorsal root ganglia (DRGs) treated with a combination of inflammatory mediators using ribosome profiling. We identified several hundred transcripts subject to rapid preferential translation. Among them is the immediate early gene (IEG) Arc. We provide evidence that Arc is translated in afferent fibers in the skin. Arc-deficient mice display several signs of exaggerated inflammation which is normalized on injection of Arc containing extracellular vesicles (EVs). Our work suggests that noxious cues can trigger Arc production by nociceptors which in turn constrains neurogenic inflammation in the skin.
Cell-specific deletion of PGC-1α from medium spiny neurons causes transcriptional alterations and age-related motor impairment

J Neurosci.

2018 Feb 28

McMeekin LJ, Li Y, Fox SN, Rowe GC, Crossman DK, Day JJ, Li Y, Detloff PJ, Cowell RM.
PMID: 29491012 | DOI: 10.1523/JNEUROSCI.0848-17.2018

Multiple lines of evidence indicate that a reduction in the expression and function of the transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1α (PGC-1α) is associated with neurodegeneration in diseases such as Huntington Disease (HD). Polymorphisms in the PGC-1α gene modify HD progression, and PGC-1α expression is reduced in striatal medium spiny neurons (MSNs) of HD patients and mouse models. However, neither the MSN-specific function of PGC-1α nor the contribution of PGC-1α deficiency to motor dysfunction is known. We identified novel PGC-1α-dependent transcripts involved in RNA processing, signal transduction and neuronalmorphology and confirmed reductions in these transcripts in male and female mice lacking PGC-1α specifically in MSNs, indicating a cell-autonomous effect in this population. MSN-specific PGC-1α deletion caused reductions in previously identified neuronal and metabolic PGC-1α-dependent genes, without causing striatal vacuolizations. Interestingly, these mice exhibited a hypoactivity with age, similar to several HD animal models. However, these newly identified PGC-1α-dependent genes were upregulated with disease severity and age in knockin HD mouse models independent of changes in PGC-1α transcript, contrary to what would be predicted from a loss-of-function etiological mechanism. These data indicate that PGC-1α is necessary for MSN transcriptional homeostasis and function with age and that, while PGC-1α loss in MSNs does not replicate an HD-like phenocopy, its downstream genes are altered in a repeat-length and age-dependent fashion. Understanding the additive effects of PGC-1α gene functional variation and mutant huntingtin on transcription in this cell type may provide insight into the selective vulnerability of MSNs in HD.SIGNIFICANCE STATEMENTReductions in PGC-1α-mediated transcription have been implicated in the pathogenesis of Huntington Disease (HD). We show that while PGC-1α-dependent transcription is necessary to maintain MSN function with age, its loss is insufficient to cause striatal atrophy in mice. We also highlight a set of genes that can serve as proxies for PGC-1α functional activity in the striatum for target engagement studies. Furthermore, we demonstrate that PGC-1α-dependent genes are upregulated in a dose and age-dependent fashion in HD mouse models, contrary to what would be predicted from a loss-of-function etiological mechanism. However, given this role for PGC-1α in MSN transcriptional homeostasis, it is important to consider how genetic variation in PGC-1α could contribute to mutant-huntingtin-induced cell death and disease progression.

Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor

Part Fibre Toxicol.

2018 May 03

Jaligama S, Patel VS, Wang P, Sallam A, Harding J, Kelley M, Mancuso SR, Dugas TR, Cormier SA.
PMID: 29724254 | DOI: 10.1186/s12989-018-0255-3

Abstract

BACKGROUND:

Pollutant particles containing environmentally persistent free radicals (EPFRs) are formed during many combustion processes (e.g. thermal remediation of hazardous wastes, diesel/gasoline combustion, wood smoke, cigarette smoke, etc.). Our previous studies demonstrated that acute exposure to EPFRs results in dendritic cell maturation and Th17-biased pulmonary immune responses. Further, in a mouse model of asthma, these responses were enhanced suggesting exposure to EPFRs as a risk factor for the development and/or exacerbation of asthma. The aryl hydrocarbon receptor (AHR) has been shown to play a role in the differentiation of Th17 cells. In the current study, we determined whether exposure to EPFRs results in Th17 polarization in an AHR dependent manner.

RESULTS:

Exposure to EPFRs resulted in Th17 and IL17A dependent pulmonary immune responses including airway neutrophilia. EPFR exposure caused a significant increase in pulmonary Th17 cytokines such as IL6, IL17A, IL22, IL1β, KC, MCP-1, IL31 and IL33. To understand the role of AHR activation in EPFR-induced Th17 inflammation, A549 epithelial cells and mouse bone marrow-derived dendritic cells (BMDCs) were exposed to EPFRs and expression of Cyp1a1 and Cyp1b1, markers for AHR activation, was measured. A significant increase in Cyp1a1 and Cyp1b1 gene expression was observed in pulmonary epithelial cells and BMDCs in an oxidative stress and AHR dependent manner. Further, in vivo exposure of mice to EPFRs resulted in oxidative stress and increased Cyp1a1 and Cyp1b1 pulmonary gene expression. To further confirm the role of AHR activation in pulmonary Th17 immune responses, mice were exposed to EPFRs in the presence or absence of AHR antagonist. EPFR exposure resulted in a significant increase in pulmonary Th17 cells and neutrophilic inflammation, whereas a significant decrease in the percentage of Th17 cells and neutrophilic inflammation was observed in mice treated with AHR antagonist.

CONCLUSION:

Exposure to EPFRs results in AHR activation and induction of Cyp1a1 and in vitro this is dependent on oxidative stress. Further, our in vivo studies demonstrated a role for AHR in EPFR-induced pulmonary Th17 responses including neutrophilic inflammation.

Knockdown of Acid-sensing Ion Channel 1a in the PVN Promotes Metabolic Disturbances in Male Mice

Endocrinology

2022 Oct 01

Wang, W;Xu, M;Yue, J;Zhang, Q;Nie, X;Jin, Y;Zhang, Z;
PMID: 35894166 | DOI: 10.1210/endocr/bqac115

Increasing incidence of metabolic disturbances has become a severe public healthcare problem. Ion channels and receptors in the paraventricular nucleus (PVN) of the hypothalamus serve vital roles in modulating neuronal activities and endocrine functions, which are linked to the regulation of energy balance and glucose metabolism. In this study, we found that acid-sensing ion channel 1a (ASIC1a), a Ca2+-permeable cationic ion channel was localized in the PVN. Knockdown of ASIC1a in this region led to significant body weight gain, glucose intolerance, and insulin resistance. Pharmacological inhibition of ASIC1a resulted in an increase in food intake and a decrease in energy expenditure. Our findings suggest ASIC1a in the PVN as a potential new target for the therapeutic intervention of metabolic disorders.
A03 Alternative processing of human HTT MRNA in YAC128 mice: implications for Huntington’s disease therapeutics

A: Pathogenic mechanisms

2022 Sep 01

Fienko, S;Landles, C;Sathasivam, K;Gomez-Paredes, C;McAteer, S;Milton, R;Osborne, G;Jones, S;Phillips, J;Kordasiewicz, H;Bates, G;
| DOI: 10.1136/jnnp-2022-ehdn.3

RESULTS Microscopic analysis revealed that the full-length _HTT_ mRNA (_FL-HTT_) was retained in RNA nuclear clusters together with the incompletely spliced _HTT1a_ transcript. These clusters were not observed in zQ175 HD mouse model where, instead, _FL-Htt_ and _Htt1a_ mRNAs were detected as mostly cytoplasmic molecules. Immunohistochemistry showed a progressive appearance of aggregated HTT in nuclei in the cortex, striatum, hippocampus and cerebellum. HTRF indicated that the level of exon 1 HTT was highest in the cerebellum. Soluble mutant exon 1 HTT decreased with age, with concomitant increase in aggregated HTT. In YAC128 MEFs, _HTT1a_ was detected and ASOs targeting _HTT_ were efficient in lowering _HTT_ levels in this model system.
Differential expression of complement genes in mammalian eyes

Investigative Ophthalmology & Visual Science

2022 Jan 01

Yang, H;Yuan, M;Gaurang, P;Sun, A;

RESULTS : In rodent eye (both rat and mouse), CFH mRNA is strongly expressed in the retinal pigment epithelium with some expression also found in inner nuclear (INL) and retinal ganglion cell (RGC) layers of the retina. C3 mRNA is expressed mainly in RGC, INL of retina, ciliary body, corneal epithelium with some expression is also found in rodent retinal pigment epithelium layer. However, in human eye, CFH and C3 mRNA are strongly expressed in the choroid. Some expression is also found in RGC, INL layer of retina, ONH, sclera, cornea endothelial and stroma; and ciliary body. There is no C3 or CFH signal detected in RPE cells.

Pages

  • « first
  • ‹ previous
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?