ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Int J Clin Exp Pathol (2018)
2018 Nov 15
Cui L, Qu C, Liu H.
| DOI: ISSN:1936-2625/IJCEP0085220
Cell Tissue Res.
2016 Apr 05
Brenna Ø, Furnes MW, Munkvold B, Kidd M, Sandvik AK, Gustafsson BI.
PMID: 27044258 | DOI: -
Guanylin (GUCA2A/Guca2a/GN) and uroguanylin (GUCA2B/Guca2b/UGN) are expressed in the gastrointestinal tract and have been implicated in ion and fluid homeostasis, satiety, abdominal pain, growth and intestinal barrier integrity. Their cellular sources are debated and include goblet cells, entero-/colonocytes, enteroendocrine (EE) cells and tuft cells. We therefore investigated the cellular sources of GN and UGN mRNAs in human and rat duodenal and colonic epithelium with in situ hybridization (ISH) to determine co-expression with Chromogranin A (CHGA/Chga/CgA; enterochromaffin [EC] cells), defensin alpha 6 (DEFA6/Defa6; Paneth cells), mucin 2 (MUC2/Muc2; goblet cells) and selected tuft cell markers. GUCA2A/Guca2a expression was localized to goblet cells and colonocytes in human and rat colon. In human duodenum, GUCA2A was expressed in Paneth cells and was scarce in villous epithelial cells. In rat duodenum, Guca2a was only localized to goblet cells. Guca2b was focally expressed in rat colon. In human and rat duodenum and in human colon, GUCA2B/Guca2b was expressed in dispersed solitary epithelial cells, some with a tuft cell-like appearance. Neither GUCA2A nor GUCA2B were co-expressed with CHGA in human duodenal cells. Consequently, EC cells are probably not the major source of human GN or UGN but other EE cells as a source of GN or UGN are not entirely excluded. No convincing overlap with tuft cell markers was found. For the first time, we demonstrate the cellular expression of GUCA2B in human duodenum. The specific cellular distribution of both GN and UGN differs between duodenum and colon and between human and rat intestines.
Annals of oncology : official journal of the European Society for Medical Oncology
2022 May 04
Rischin, D;Mehanna, H;Young, RJ;Bressel, M;Dunn, J;Corry, J;Soni, P;Fulton-Lieuw, T;Iqbal, G;Kenny, L;Porceddu, S;Wratten, C;Robinson, M;Solomon, BJ;Trans-Tasman Radiation Oncology Group and the De-ESCALaTE HPV Trial Group, ;
PMID: 35525376 | DOI: 10.1016/j.annonc.2022.04.074
Head Neck Pathol.
2017 Feb 08
Rooper LM, Bishop JA, Westra WH.
PMID: 28181187 | DOI: 10.1007/s12105-017-0779-0
The role of human papillomavirus (HPV) as an etiologic and transformational agent in inverted Schneiderian papilloma (ISP) is unclear. Indeed, reported detection rates of HPV in ISPs range from 0 to 100%. The true incidence has been confounded by a tendency to conflate high- and low-risk HPV types and by the inability to discern biologically relevant from irrelevant HPV infections. The recent development of RNA in situ hybridization for high-risk HPV E6/E7 mRNA now allows the direct visualization of transcriptionally active high-risk HPV in ISP, providing an opportunity to more definitively assess its role in the development and progression of ISPs. We performed p16 immunohistochemistry and high-risk HPV RNA in situ hybridization on 30 benign ISPs, 7 ISPs with dysplasia, 16 ISPs with carcinomatous transformation, and 7 non-keratinizing squamous cell carcinomas (SCCs) with inverted growth that were unassociated with ISP. Transcriptionally active HPV was not detected in any of the 52 ISPs including those that had undergone carcinomatous transformation, but it was detected in two of seven (29%) non-keratinizing SCCs that showed inverted growth. There was a strong correlation between high-risk HPV RNA in situ hybridization and p16 immunohistochemistry (97%; p < 0.01). These results indicate that transcriptionally active high-risk HPV does not play a common role in either the development of ISP or in its transformation into carcinoma.
Microbiology spectrum
2023 Feb 21
Rao, X;Zheng, L;Wei, K;Li, M;Jiang, M;Qiu, J;Zhou, Y;Ke, R;Lin, C;
PMID: 36809088 | DOI: 10.1128/spectrum.03896-22
Histochem Cell Biol.
2016 May 31
Ikpa PT, Sleddens HF, Steinbrecher KA, Peppelenbosch MP, de Jonge HR, Smits R, Bijvelds MJ.
PMID: 27246004 | DOI: -
Guanylin (GN) and uroguanylin (UGN), through activation of guanylyl cyclase C (GCC), serve to control intestinal fluid homeostasis. Both peptides are produced in the intestinal epithelium, but their cellular origin has not been fully charted. Using quantitative PCR and an improved in situ hybridization technique (RNAscope), we have assessed the expression of GN (Guca2a), UGN (Guca2b), and GCC (Gucy2c) in mouse intestine. In the crypts of Lieberkühn, expression of Guca2a and Guca2b was restricted to cells of secretory lineage, at the crypt's base, and to a region above, previously identified as a common origin of cellular differentiation. In this compartment, comparatively uniform levels of Guca2a and Guca2b expression were observed throughout the length of the gut. In contrast, Guca2a and Guca2b expression in the villus-surface region was more variable, and reflected the distinct, but overlapping expression pattern observed previously. Accordingly, in jejunum and ileum, Guca2a and Guca2b were abundantly expressed by enterocytes, whereas in colon only Guca2a transcript was found in the surface region. In duodenum, only low levels of Guca2b transcript were observed in columnar cells, and Guca2a expression was restricted entirely to cells of the secretory lineage. Gucy2c was shown to be expressed relatively uniformly along the rostrocaudal and crypt-villus axes and was also found in the duodenal glands. Our study reveals novel aspects of the cellular localization of the GCC signaling axis that, apart from its role in the regulation of fluid balance, link it to pH regulation, cell cycle control, and host defense.
Virchows Arch. 2015 Jul 31.
Laco J, Sieglová K, Vošmiková H, Dundr P, Němejcová K, Michálek J, Čelakovský P, Chrobok V, Mottl R, Mottlová A, Tuček L, Slezák R, Chmelařová M, Sirák I, Vošmik M, Ryška A.
PMID: 26229021
Human Pathology (2015)
Chang SY, Keeney M, Law M, Donovan J, Aubry MC, Garcia J.
Mod Pathol. 2013 Feb;26(2):223-31.
Chernock RD, Wang X, Gao G, Lewis JS Jr, Zhang Q, Thorstad WL, El-Mofty SK.
PMID: 22996374 | DOI: 10.1038/modpathol.2012.159.
Otolaryngol Head Neck Surg. 2015 Feb 27.
Stoddard DG Jr, Keeney MG, Gao G, Smith DI, García JJ, O'Brien EK.
PMID: 25724573 | DOI: 0194599815571285.
Pathology - Research and Practice
2016 Sep 22
Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009
Background and aims
The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).
Methods
One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).
Results
HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).
Conclusions
HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.
Head Neck Pathol.
2017 May 20
Lewis JS Jr, Chernock RD, Bishop JA.
PMID: 28528398 | DOI: 10.1007/s12105-017-0825-y
The performance characteristics of neuroendocrine-specific and squamous-specific immunohistochemical markers in head and neck squamous cell carcinomas (SCC), in particular in oropharyngeal tumors in this era of human papillomavirus (HPV)-induced cases, are not well-established. The differential diagnosis for poorly differentiated SCCs, for nonkeratinizing oropharyngeal SCCs, and for other specific SCC variants such as basaloid SCC and undifferentiated (or lymphoepithelial-like) carcinomas includes neuroendocrine carcinomas. Given that neuroendocrine carcinomas of the head and neck are aggressive regardless of HPV status, separating them from SCC is critically important. In this study, we examined the neuroendocrine markers CD56, synaptophysin, and chromogranin-A along with the squamous markers p40 and cytokeratin 5/6 in a large tissue microarray cohort of oral, oropharyngeal, laryngeal, and hypopharyngeal SCCs with known HPV results by RNA in situ hybridization for the oropharyngeal tumors. Results were stratified by site and specific SCC variant. The neuroendocrine stains were rarely expressed in SCC (<1% overall) with CD56 the least, and chromogranin-A the most, specific markers. Further, p40 and cytokeratin 5/6 were very consistently expressed in all head and neck SCC (>98% overall), including very strong, consistent staining in oropharyngeal HPV-related nonkeratinizing SCC. Undifferentiated (or lymphoepithelial-like) carcinomas of the oropharynx are more frequently p40 or cytokeratin 5/6 negative or show only weak or focal expression. In summary, markers of neuroendocrine and squamous differentiation show very high specificity and sensitivity, respectively, across the different types of head and neck SCC.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com