Golden, JW;Li, R;Cline, CR;Zeng, X;Mucker, EM;Fuentes-Lao, AJ;Spik, KW;Williams, JA;Twenhafel, N;Davis, N;Moore, JL;Stevens, S;Blue, E;Garrison, AR;Larson, DD;Stewart, R;Kunzler, M;Liu, Y;Wang, Z;Hooper, JW;
PMID: 35073750 | DOI: 10.1128/mbio.02906-21
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health emergency. While most human disease is mild to moderate, some infections lead to a severe disease characterized by acute respiratory distress, hypoxia, anosmia, ageusia, and, in some instances, neurological involvement. Small-animal models reproducing severe disease, including neurological sequela, are needed to characterize the pathophysiological mechanism(s) of disease and to identify medical countermeasures. Transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the K18 promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge when high viral doses are used. Here, we report on SARS-CoV-2 infection of hamsters engineered to express the hACE2 receptor under the control of the K18 promoter. K18-hACE2 hamsters infected with a relatively low dose of 100 or 1,000 PFU of SARS-CoV-2 developed a severe and lethal disease, with most animals succumbing by day 5 postinfection. Hamsters developed severe lesions and inflammation within the upper and lower respiratory system, including infection of the nasal cavities causing marked destruction of the olfactory epithelium as well as severe bronchopneumonia that extended deep into the alveoli. Additionally, SARS-CoV-2 infection spread to the central nervous system (CNS), including the brain stem and spinal cord. Wild-type (WT) hamsters naturally support SARS-CoV-2 infection, with the primary lesions present in the respiratory tract and nasal cavity. Overall, infection in the K18-hACE2 hamsters is more extensive than that in WT hamsters, with more CNS involvement and a lethal outcome. These findings demonstrate the K18-hACE2 hamster model will be valuable for studying SARS-CoV-2. IMPORTANCE The rapid emergence of SARS-CoV-2 has created a global health emergency. While most human SARS-CoV-2 disease is mild, some people develop severe, life-threatening disease. Small-animal models mimicking the severe aspects of human disease are needed to more clearly understand the pathophysiological processes driving this progression. Here, we studied SARS-CoV-2 infection in hamsters engineered to express the human angiotensin-converting enzyme 2 viral receptor under the control of the K18 promoter. SARS-CoV-2 produces a severe and lethal infection in transgenic hamsters that mirrors the most severe aspects of COVID-19 in humans, including respiratory and neurological injury. In contrast to other animal systems, hamsters manifest disease with levels of input virus more consistent with natural human infection. This system will be useful for the study of SARS-CoV-2 disease and the development of drugs targeting this virus.
Chen, J;Murphy, M;Singh, K;Wang, A;Chow, R;Kim, S;Cohen, J;Ko, C;Damsky, W;
| DOI: 10.1016/j.xjidi.2023.100189
Acral dermatoses, including hyperkeratotic palmoplantar eczema (HPE), palmoplantar psoriasis (PP), and mycosis fungoides palmaris et plantaris (MFPP), can be challenging to diagnose clinically and histopathologically. In this setting, cytokine biomarkers may be able to help provide diagnostic clarity. We therefore evaluated interleukin (IL)-17A, interferon gamma (IFN-γ), and IL-13 expression in PP, HPE, and MFPP and compared their expression profiles to non-acral sites. We utilized biopsy specimens from the Yale Dermatopathology database, selecting cases of HPE (n=12), PP (n=8), MFPP (n=8), normal acral skin (n=9), non-acral eczema (n=10), and non-acral psoriasis (n=10) with classic clinical and histopathologic features. IL17A mRNA expression by RNA in situ hybridization differentiated PP (median score 63.1 [IQR 9.4-104.1]) from HPE (0.8 [0-6.0]; P = .003), MFPP (0.6 [0-2.6]; P = .003), and normal acral skin (0 [0-0]; P < .001). Unexpectedly, both PP and HPE demonstrated co-expression of IFNG and IL13 mRNA. In contrast, non-acral psoriasis and eczema demonstrated divergent patterns of IFNG and IL13 mRNA expression. Taken together, we show that IL17A mRNA expression may be a useful biomarker of PP, and we further demonstrate that acral dermatoses exhibit unique immunology compared to non-acral sites, with implications for clinical management.
Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN, Greene JJ, Geraghty AC, Goldstein AK, Ni L, Woo PJ, Barres BA, Liddelow S, Vogel H, Monje M.
| DOI: 10.1016/j.cell.2018.10.049
Chemotherapy results in a frequent yet poorly understood syndrome of long-term neurological deficits. Neural precursor cell dysfunction and white matter dysfunction are thought to contribute to this debilitating syndrome. Here, we demonstrate persistent depletion of oligodendrocyte lineage cells in humans who received chemotherapy. Developing a mouse model of methotrexate chemotherapy-induced neurological dysfunction, we find a similar depletion of white matter OPCs, increased but incomplete OPC differentiation, and a persistent deficit in myelination. OPCs from chemotherapy-naive mice similarly exhibit increased differentiation when transplanted into the microenvironment of previously methotrexate-exposed brains, indicating an underlying microenvironmental perturbation. Methotrexate results in persistent activation of microglia and subsequent astrocyte activation that is dependent on inflammatory microglia. Microglial depletion normalizes oligodendroglial lineage dynamics, myelin microstructure, and cognitive behavior after methotrexate chemotherapy. These findings indicate that methotrexate chemotherapy exposure is associated with persistent tri-glial dysregulation and identify inflammatory microglia as a therapeutic target to abrogate chemotherapy-related cognitive impairment.
Host IL11 Signaling Suppresses CD4+ T cell-Mediated Antitumor Responses to Colon Cancer in Mice
Cancer immunology research
Huynh, J;Baloyan, D;Chisanga, D;Shi, W;O'Brien, M;Afshar-Sterle, S;Alorro, M;Pang, L;Williams, DS;Parslow, AC;Thilakasiri, P;Eissmann, MF;Boon, L;Masson, F;Chand, AL;Ernst, M;
PMID: 33906864 | DOI: 10.1158/2326-6066.CIR-19-1023
IL11 is a member of the IL6 family of cytokines and signals through its cognate receptor subunits, IL11RA and glycoprotein 130 (GP130), to elicit biological responses via the JAK/STAT signaling pathway. IL11 contributes to cancer progression by promoting the survival and proliferation of cancer cells, but the potential immunomodulatory properties of IL11 signaling during tumor development have thus far remained unexplored. Here, we have characterized a role for IL11 in regulating CD4+ T cell-mediated antitumor responses. Absence of IL11 signaling impaired tumor growth in a sporadic mouse model of colon cancer and syngeneic allograft models of colon cancer. Adoptive bone marrow transfer experiments and in vivo depletion studies demonstrated that the tumor-promoting activity of IL11 was mediated through its suppressive effect on host CD4+ T cells in the tumor microenvironment. Indeed, when compared with Il11ra-proficient CD4+ T cells associated with MC38 tumors, their Il11ra-deficient counterparts displayed elevated expression of mRNA encoding the antitumor mediators IFNγ and TNFα. Likewise, IL11 potently suppressed the production of proinflammatory cytokines (IFNγ, TNFα, IL6, and IL12p70) by CD4+ T cells in vitro, which we corroborated by RNAscope analysis of human colorectal cancers, where IL11RAhigh tumors showed less IFNG and CD4 expression than IL11RAlow tumors. Therefore, our results ascribe a tumor cell-extrinsic immunomodulatory role to IL11 during colon cancer development that could be amenable to an anticytokine-based therapy.See related commentary by van der Burg.
Subbiah V, Murthy R, Hong DS, Prins RM, Hosing C, Hendricks K, Kolli D, Noffsinger L, Brown R, McGuire M, Fu S, Piha-Paul S, Naing A, Conley AP, Benjamin RS, Kaur I, Bosch ML.
PMID: 30018119 | DOI: 10.1158/1078-0432.CCR-17-2707
Abstract
Purpose: Dendritic cells (DC) initiate adaptive immune responses through the uptake and presentation of antigenic material. In preclinical studies, intratumorally injected activated DCs (aDCs; DCVax-Direct) were superior to immature DCs in rejecting tumors from mice.Experimental Design: This single-arm, open-label phase I clinical trial evaluated the safety and efficacy of aDCs, administered intratumorally, in patients with solid tumors. Three dose levels (2 million, 6 million, and 15 million aDCs per injection) were tested using a standard 3 + 3 dose-escalation trial design. Feasibility, immunogenicity, changes to the tumor microenvironment after direct injection, and survival were evaluated. We also investigated cytokine production of aDCs prior to injection.Results: In total, 39 of the 40 enrolled patients were evaluable. The injections of aDCs were well tolerated with no dose-limiting toxicities. Increased lymphocyte infiltration was observed in 54% of assessed patients. Stable disease (SD; best response) at week 8 was associated with increased overall survival. Increased secretion of interleukin (IL)-8 and IL12p40 by aDCs was significantly associated with survival (P = 0.023 and 0.024, respectively). Increased TNFα levels correlated positively with SD at week 8 (P < 0.01).Conclusions: Intratumoral aDC injections were feasible and safe. Increased production of specific cytokines was correlated with SD and prolonged survival, demonstrating a link between the functional profile of aDCs prior to injection and patient outcomes.
Sladitschek-Martens, HL;Guarnieri, A;Brumana, G;Zanconato, F;Battilana, G;Xiccato, RL;Panciera, T;Forcato, M;Bicciato, S;Guzzardo, V;Fassan, M;Ulliana, L;Gandin, A;Tripodo, C;Foiani, M;Brusatin, G;Cordenonsi, M;Piccolo, S;
PMID: 35768505 | DOI: 10.1038/s41586-022-04924-6
Ageing is intimately connected to the induction of cell senescence1,2, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing3. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.
Zhang, X;Zhang, C;Qiao, M;Cheng, C;Tang, N;Lu, S;Sun, W;Xu, B;Cao, Y;Wei, X;Wang, Y;Han, W;Wang, H;
PMID: 36240777 | DOI: 10.1016/j.ccell.2022.09.013
Chimeric antigen receptor (CAR) T cell therapy has limited efficacy against solid tumors, and one major challenge is T cell exhaustion. To address this challenge, we performed a candidate gene screen using a hypofunction CAR-T cell model and found that depletion of basic leucine zipper ATF-like transcription factor (BATF) improved the antitumor performance of CAR-T cells. In different types of CAR-T cells and mouse OT-1 cells, loss of BATF endows T cells with improved resistance to exhaustion and superior tumor eradication efficacy. Mechanistically, we found that BATF binds to and up-regulates a subset of exhaustion-related genes in human CAR-T cells. BATF regulates the expression of genes involved in development of effector and memory T cells, and knocking out BATF shifts the population toward a more central memory subset. We demonstrate that BATF is a key factor limiting CAR-T cell function and that its depletion enhances the antitumor activity of CAR-T cells against solid tumors.
Journal of cutaneous pathology
Bartley, B;Cho, WC;Rady, PL;Dai, J;Curry, JL;Milbourne, A;Tyring, SK;Torres-Cabala, CA;
PMID: 36039682 | DOI: 10.1111/cup.14319
Epidermodysplasia verruciformis (EDV) is a rare genodermatosis that predisposes individuals to persistent infection with β-human papillomavirus (HPV) genotypes. The term EDV acanthoma may be applied to lesions with incidental findings of EDV-defining histopathological features without clinical signs of EDV. We report a case of HPV-14- and -21-positive EDV acanthoma arising in association with condyloma in a female patient with a history of low-grade squamous intraepithelial lesion of the cervix positive for high-risk HPV (non-16/18), chronic kidney disease, and systemic lupus erythematosus. The patient had no family or personal history of EDV, but the patient was on immunosuppressive therapy with mycophenolate mofetil and prednisone. A biopsy specimen from one of the perianal lesions revealed histopathologic changes consistent with EDV in the setting of condyloma. Molecular testing showed HPV-14 and -21, which supported the coexistence of condyloma with EDV acanthoma.
Ricardo-Gonzalez, RR;Kotas, ME;O'Leary, CE;Singh, K;Damsky, W;Liao, C;Arouge, E;Tenvooren, I;Marquez, DM;Schroeder, AW;Cohen, JN;Fassett, MS;Lee, J;Daniel, SG;Bittinger, K;Díaz, RE;Fraser, JS;Ali, N;Ansel, KM;Spitzer, MH;Liang, HE;Locksley, RM;
PMID: 36044899 | DOI: 10.1016/j.immuni.2022.08.001
Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.
Doke, T;Abedini, A;Aldridge, DL;Yang, YW;Park, J;Hernandez, CM;Balzer, MS;Shrestra, R;Coppock, G;Rico, JMI;Han, SY;Kim, J;Xin, S;Piliponsky, AM;Angelozzi, M;Lefebvre, V;Siracusa, MC;Hunter, CA;Susztak, K;
PMID: 35552540 | DOI: 10.1038/s41590-022-01200-7
Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.
Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer
Qiao, Y;Choi, J;Tien, J;Simko, S;Rajendiran, T;Vo, J;Delekta, A;Wang, L;Xiao, L;Hodge, N;Desai, P;Mendoza, S;Juckette, K;Xu, A;Soni, T;Su, F;Wang, R;Cao, X;Yu, J;Kryczek, I;Wang, X;Wang, X;Siddiqui, J;Wang, Z;Bernard, A;Fernandez-Salas, E;Navone, N;Ellison, S;Ding, K;Eskelinen, E;Heath, E;Klionsky, D;Zou, W;Chinnaiyan, A;
| DOI: 10.1038/s43018-021-00237-1
(A) Myc-CaP wild-type (WT) and _Atg5_ knockout (_Atg5_ KO) cells were treated with increasing concentrations of ESK981 for 24 hours. Atg5 and LC3 levels were assessed by western blot from three independent experiments. GAPDH served as a loading control. (B) Representative morphology of vacuolization in Myc-CaP wild-type (WT) and _Atg5_ knockout (_Atg5_ KO) cells after treatment with control or 100 nM ESK981 for 24 hours from three independent experiments. (C) Autophagosome content of Myc-CaP WT and _Atg5_ KO cells were measured by CYTO-ID assay after being treated with increasing concentrations of ESK981 for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated. (D) Mouse cytokine array using Myc-CaP WT and _Atg5_ KO cell supernatant after treatment with 10 ng/ml mouse interferon gamma (mIFNγ) or mIFNγ + 100 nM ESK981 for 24 hours. Differential expression candidate dots are highlighted by boxes. (E) Mouse CXCL10 protein levels were measured by ELISA in Myc-CaP WT and _Atg5_ KO conditioned medium with the indicated treatment for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated. (F) mRNA levels of _Cxcl10_ and _Cxcl9_ were measured by qPCR in Myc-CaP WT and _Atg5_ KO cells with 50 nM or 100 nM ESK981 and 10 ng/ml mIFNγ treatment for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated.
Zhonghua bing li xue za zhi = Chinese journal of pathology
Li, LL;Cui, YY;Gao, PY;Xia, L;Liu, GZ;Liu, H;
PMID: 35785831 | DOI: 10.3760/cma.j.cn112151-20220301-00137
Objective: To investigate the clinicopathological characteristics, immunophenotype, molecular characteristics, differential diagnosis, clinical treatment and prognosis of mixed carcinoma of cervix with adenoid cystic pattern. Methods: Three cases of mixed cervical carcinoma with adenoid cystic pattern were collected at the Affiliated Hospital of Xuzhou University Medical School from 2018 to 2021.The clinicopathological characteristics were analyzed, immunohistochemistry (IHC) and in situ hybridization (ISH) were performed. The related literature was reviewed. Results: The three patients were postmenopausal women with a median age of 74.7 years. The clinical symptom was vaginal bleeding without obvious causes. One case was an endophytic tumor, and the others were exophytic. The median diameter of the three cases was 3.3 cm. Two patients underwent hysterectomy, the tumors infiltrated the external 1/3 and middle 1/3 of the cervix respectively. All the lymph nodes were negative. One patient had a previous biopsy. Microscopically, all three tumors were characterized by a cribriform structure, which were filled with basophilic myxoid substance and surrounded by tubules lined by two layers of cells. The tumor cells had scanty cytoplasm and showed the characteristics of cervical basal-like cells. All three cases were accompanied by high-grade squamous intraepithelial lesions and squamous cell carcinoma, and one also showed a non-specific spindle cell sarcomatoid component. Within the double-layered epithelial structure, the outer epithelium was positive for p63, CD117, p16INK4a (clone E6H4) and MYB protein and negative for S-100 by IHC. The combined positive score of PD-L1 (clone 22C3) was less than 1 in all three cases. Human papillomavirus (HPV) types 16 and 18 were detected in one patient preoperatively, while high-risk HPV were positive in the other two patients by RNAscope ISH postoperatively. None of the three cases showed MYB gene rearrangement by FISH. The mean follow-up time was 23.3 months (36, 28 and 6 months, respectively). Two patients underwent hysterectomy and radiotherapy survived without disease. One patient survived with tumor just by radiotherapy and drug therapy. Conclusions: Mixed cervical carcinoma with adenoid cystic pattern is extremely rare. It is a high-grade malignancy with poor prognosis. The tumor is associated with high-risk HPV infection, without MYB gene rearrangement, and with low PD-L1 immunoreactivity. Radical surgery combined with radiotherapy and chemotherapy is the mainstay of treatment at present.