Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (5)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (4) Apply Cancer filter
  • HPV (3) Apply HPV filter
  • Epidermodysplasia verruciformis (1) Apply Epidermodysplasia verruciformis filter

Category

  • Publications (5) Apply Publications filter
Prognostic Analysis of HPV Status in Sinonasal Squamous Cell Carcinoma

Cancers

2022 Apr 08

Tendron, A;Classe, M;Casiraghi, O;Pere, H;Even, C;Gorphe, P;Moya-Plana, A;
PMID: 35454782 | DOI: 10.3390/cancers14081874

Sinonasal squamous cell carcinoma (SNSCC) is a rare and aggressive malignancy with poor prognosis. Human papilloma virus (HPV) can induce SNSCC although its incidence and impact on patients' outcomes remains unclear. We performed a retrospective cohort study of patients with SNSCC treated consecutively in a comprehensive cancer center. HPV status was determined with p16 immunohistochemistry followed by RNA in situ hybridization (RNAscope). The incidence, clinical characteristics, and oncologic outcomes of HPV+SNSCC were assessed. P16 prognostic value was evaluated. Fifty-nine patients were included. Eleven (18.6%) SNSCC were p16+ with five (8.4%) doubtful cases. RNAscope was positive in nine cases (15.2%). Patients with HPV+SNSCC were younger (p = 0.0298) with a primary tumor originating mainly in nasal fossa (p < 10-4). Pathologic findings were not different according to HPV status. Among patients who were curatively treated, overall survival was better for HPV+SNSCC (p = 0.022). No prognostic value of p16 expression was reported. Patients with HPV+SNSCC have better oncologic outcomes, probably due to earlier tumor stage with primary location predominantly in the nasal fossa, a more suitable epicenter to perform a surgical resection with clear margins. P16 expression seems not to be a good surrogate of HPV status in SNSCC.
Penile Squamous Cell Carcinoma Exclusive to the Shaft, with a Proposal for a Novel Staging System

Human pathology

2022 Dec 22

Tekin, B;Guo, R;Cheville, JC;Canete-Portillo, S;Sanchez, DF;Fernandez-Nestosa, MJ;Dasari, S;Menon, S;Herrera Hernandez, L;Jimenez, RE;Erickson, LA;Cubilla, AL;Gupta, S;
PMID: 36566905 | DOI: 10.1016/j.humpath.2022.12.012

Penile squamous cell carcinomas (SCC) originating in the shaft are rare. pT1/pT2 categories in the American Joint Committee on Cancer (AJCC) staging manual (8th edition) are poorly defined for SCCs arising in the dorsal shaft as anatomic structures differ between the glans and dorsal shaft (corpus spongiosum vs dartos/Buck's fascia, respectively). We reviewed six penile SCC cases exclusive to the shaft, an unusual presentation, identified amongst 120 patients treated with penectomy. We propose a novel pT staging system for dorsal shaft tumors tailored to its anatomic landmarks, where tumors extending to Buck's fascia are considered pT2 instead of pT1. The mean age at penectomy, average duration of follow-up, and mean depth of invasion were 64 years, 45 months, and 9.8 mm, respectively. Four cases were moderately differentiated, HPV-negative SCCs of the usual type and two cases were HPV-positive basaloid and warty-basaloid carcinomas. Three cases had nodal or distant metastasis at the time of penectomy, and histologic assessment in these cases showed invasion into the Buck's fascia or deeper. According to the current AJCC system, only one of these three cases would be staged as ≥pT2. In contrast, all three metastatic tumors would be staged as ≥pT2 in the proposed model. At last follow-up, one patient died of disease-related complications. Based on this limited series, the proposed staging model appears to suggest better patient stratification for pT1/pT2 stages. This model incorporates Buck's fascia, which has been postulated as a pathway of tumor infiltration. Additional studies are needed to validate this model.
Condyloma and coincidental epidermodysplasia verruciformis acanthoma positive for human papillomavirus-14 and-21

Journal of cutaneous pathology

2022 Aug 30

Bartley, B;Cho, WC;Rady, PL;Dai, J;Curry, JL;Milbourne, A;Tyring, SK;Torres-Cabala, CA;
PMID: 36039682 | DOI: 10.1111/cup.14319

Epidermodysplasia verruciformis (EDV) is a rare genodermatosis that predisposes individuals to persistent infection with β-human papillomavirus (HPV) genotypes. The term EDV acanthoma may be applied to lesions with incidental findings of EDV-defining histopathological features without clinical signs of EDV. We report a case of HPV-14- and -21-positive EDV acanthoma arising in association with condyloma in a female patient with a history of low-grade squamous intraepithelial lesion of the cervix positive for high-risk HPV (non-16/18), chronic kidney disease, and systemic lupus erythematosus. The patient had no family or personal history of EDV, but the patient was on immunosuppressive therapy with mycophenolate mofetil and prednisone. A biopsy specimen from one of the perianal lesions revealed histopathologic changes consistent with EDV in the setting of condyloma. Molecular testing showed HPV-14 and -21, which supported the coexistence of condyloma with EDV acanthoma.
[Clinicopathological features of mixed cervical carcinoma with adenoid cystic pattern]

Zhonghua bing li xue za zhi = Chinese journal of pathology

2022 Jul 08

Li, LL;Cui, YY;Gao, PY;Xia, L;Liu, GZ;Liu, H;
PMID: 35785831 | DOI: 10.3760/cma.j.cn112151-20220301-00137

Objective: To investigate the clinicopathological characteristics, immunophenotype, molecular characteristics, differential diagnosis, clinical treatment and prognosis of mixed carcinoma of cervix with adenoid cystic pattern. Methods: Three cases of mixed cervical carcinoma with adenoid cystic pattern were collected at the Affiliated Hospital of Xuzhou University Medical School from 2018 to 2021.The clinicopathological characteristics were analyzed, immunohistochemistry (IHC) and in situ hybridization (ISH) were performed. The related literature was reviewed. Results: The three patients were postmenopausal women with a median age of 74.7 years. The clinical symptom was vaginal bleeding without obvious causes. One case was an endophytic tumor, and the others were exophytic. The median diameter of the three cases was 3.3 cm. Two patients underwent hysterectomy, the tumors infiltrated the external 1/3 and middle 1/3 of the cervix respectively. All the lymph nodes were negative. One patient had a previous biopsy. Microscopically, all three tumors were characterized by a cribriform structure, which were filled with basophilic myxoid substance and surrounded by tubules lined by two layers of cells. The tumor cells had scanty cytoplasm and showed the characteristics of cervical basal-like cells. All three cases were accompanied by high-grade squamous intraepithelial lesions and squamous cell carcinoma, and one also showed a non-specific spindle cell sarcomatoid component. Within the double-layered epithelial structure, the outer epithelium was positive for p63, CD117, p16INK4a (clone E6H4) and MYB protein and negative for S-100 by IHC. The combined positive score of PD-L1 (clone 22C3) was less than 1 in all three cases. Human papillomavirus (HPV) types 16 and 18 were detected in one patient preoperatively, while high-risk HPV were positive in the other two patients by RNAscope ISH postoperatively. None of the three cases showed MYB gene rearrangement by FISH. The mean follow-up time was 23.3 months (36, 28 and 6 months, respectively). Two patients underwent hysterectomy and radiotherapy survived without disease. One patient survived with tumor just by radiotherapy and drug therapy. Conclusions: Mixed cervical carcinoma with adenoid cystic pattern is extremely rare. It is a high-grade malignancy with poor prognosis. The tumor is associated with high-risk HPV infection, without MYB gene rearrangement, and with low PD-L1 immunoreactivity. Radical surgery combined with radiotherapy and chemotherapy is the mainstay of treatment at present.
A Case of HPV-Associated Oropharyngeal Squamous Cell Carcinoma with Block-Like, Partial Loss of p16 Expression

Head and neck pathology

2022 Jun 30

Rasmussen, SA;Lewis, JS;Mirabello, L;Bass, S;Yeager, M;Corsten, MJ;Bullock, MJ;
PMID: 35771403 | DOI: 10.1007/s12105-022-01463-4

Oropharyngeal squamous cell carcinoma is frequently associated with high-risk HPV infection, which confers a good prognosis. Immunohistochemistry for p16 is used as a surrogate for HPV status, but discrepant results are occasionally seen. Here, we report a case with a unique pattern of partial loss of p16.A 63 year old male presented with a base of tongue nonkeratinizing squamous cell carcinoma and a large metastatic neck mass. The primary lesion and multiple regions of the metastatic mass were assessed with p16 immunohistochemistry, RNA in situ hybridization for high-risk HPV, and HPV16 genome sequencing.The primary lesion was p16 negative, and the metastatic neck mass had large, confluent regions that were either strongly p16 positive or entirely p16 negative. All of these regions were positive for high-risk HPV with identical HPV16 genomes.This unusual case illustrates a potential diagnostic pitfall, and it raises important questions regarding molecular mechanisms and prognostic implications of p16 staining in oropharyngeal squamous cell carcinoma.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?