Paul, T;Ledderose, S;Bartsch, H;Sun, N;Soliman, S;Märkl, B;Ruf, V;Herms, J;Stern, M;Keppler, OT;Delbridge, C;Müller, S;Piontek, G;Kimoto, YS;Schreiber, F;Williams, TA;Neumann, J;Knösel, T;Schulz, H;Spallek, R;Graw, M;Kirchner, T;Walch, A;Rudelius, M;
PMID: 35332140 | DOI: 10.1038/s41467-022-29145-3
Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.
Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, Pyo CO, Park SI, Marcinkiewcz CM, Crowley NA, Krashes MJ, Lowell BB, Kash TL, Rogers JA, Bruchas MR.
PMID: 26335648 | DOI: 10.1016/j.neuron.2015.08.019
The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.
von Schimmelmann M, Feinberg PA, Sullivan JM, Ku SM, Badimon A, Duff MK, Wang Z, Lachmann A, Dewell S, Ma'ayan A, Han MH, Tarakhovsky A, Schaefer A.
PMID: 27526204 | DOI: 10.1038/nn.4360
Normal brain function depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. Neuronal specification is driven by transcriptional programs that are established during early neuronal development and remain in place in the adult brain. The fidelity of neuronal specification depends on the robustness of the transcriptional program that supports the neuron type-specific gene expression patterns. Here we show that polycomb repressive complex 2 (PRC2), which supports neuron specification during differentiation, contributes to the suppression of a transcriptional program that is detrimental to adult neuron function and survival. We show that PRC2 deficiency in striatal neurons leads to the de-repression of selected, predominantly bivalent PRC2 target genes that are dominated by self-regulating transcription factors normally suppressed in these neurons. The transcriptional changes in PRC2-deficient neurons lead to progressive and fatal neurodegeneration in mice. Our results point to a key role of PRC2 in protecting neurons against degeneration.
Godino, A;Salery, M;Durand-de Cuttoli, R;Estill, MS;Holt, LM;Futamura, R;Browne, CJ;Mews, P;Hamilton, PJ;Neve, RL;Shen, L;Russo, SJ;Nestler, EJ;
PMID: 36889314 | DOI: 10.1016/j.neuron.2023.02.013
The complex nature of the transcriptional networks underlying addictive behaviors suggests intricate cooperation between diverse gene regulation mechanisms that go beyond canonical-activity-dependent pathways. Here, we implicate in this process a nuclear receptor transcription factor, retinoid X receptor alpha (RXRα), which we initially identified bioinformatically as associated with addiction-like behaviors. In the nucleus accumbens (NAc) of male and female mice, we show that although its own expression remains unaltered after cocaine exposure, RXRα controls plasticity- and addiction-relevant transcriptional programs in both dopamine receptor D1- and D2-expressing medium spiny neurons, which in turn modulate intrinsic excitability and synaptic activity of these NAc cell types. Behaviorally, bidirectional viral and pharmacological manipulation of RXRα regulates drug reward sensitivity in both non-operant and operant paradigms. Together, this study demonstrates a key role for NAc RXRα in promoting drug addiction and paves the way for future studies of rexinoid signaling in psychiatric disease states.
American Journal of Transplantation
Saharia, KK;Ramelli, SC;Stein, SR;Roder, AE;
| DOI: 10.1016/j.ajt.2022.09.001
Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19-recovered donors. We describe successful lung transplantation for a COVID-19-related lung injury using lungs from a COVID-19-recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.
Pulmonary stromal expansion and intra-alveolar coagulation are primary causes of COVID-19 death
Szekely, L;Bozoky, B;Bendek, M;Ostad, M;Lavignasse, P;Haag, L;Wu, J;Jing, X;Gupta, S;Saccon, E;Sönnerborg, A;Cao, Y;Björnstedt, M;Szakos, A;
PMID: 34056141 | DOI: 10.1016/j.heliyon.2021.e07134
Most COVID-19 victims are old and die from unrelated causes. Here we present twelve complete autopsies, including two rapid autopsies of young patients where the cause of death was COVID-19 ARDS. The main virus induced pathology was in the lung parenchyma and not in the airways. Most coagulation events occurred in the intra-alveolar and not in the intra-vascular space and the few thrombi were mainly composed of aggregated thrombocytes. The dominant inflammatory response was the massive accumulation of CD163 + macrophages and the disappearance of T killer, NK and B-cells. The virus was replicating in the pneumocytes and macrophages but not in bronchial epithelium, endothelium, pericytes or stromal cells. The lung consolidations were produced by a massive regenerative response, stromal and epithelial proliferation and neovascularization. We suggest that thrombocyte aggregation inhibition, angiogenesis inhibition and general proliferation inhibition may have a roll in the treatment of advanced COVID-19 ARDS.
Roczkowsky, A;Limonta, D;Fernandes, JP;Branton, WG;Clarke, M;Hlavay, B;Noyce, RS;Joseph, JT;Ogando, NS;Das, SK;Elaish, M;Arbour, N;Evans, DH;Langdon, K;Hobman, TC;Power, C;
PMID: 37190821 | DOI: 10.1002/ana.26679
Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during SARS-CoV-2 infection using a multiplatform strategy.Brain tissues from COVID-19 (n=12) and other disease control (ODC) (n=12) patients, as well as primary human neural cells and Syrian hamsters, infected with a clinical variant of SARS-CoV-2, were investigated by ddPCR, RT-qPCR and immunodetection methods.SARS-CoV-2 RNA was detected in the CNS of four patients with COVID-19 with viral protein (NSP3 and spike) immunodetection in the brainstem. Olfactory bulb, brainstem, and cerebrum from patients with COVID-19 showed induction of pro-inflammatory transcripts (IL8, IL18, CXCL10, NOD2) and cytokines (GM-CSF and IL-18) compared to CNS tissues from ODC patients (p<0.05). Peroxisome biogenesis factor transcripts (PEX3, PEX5L, PEX11β and PEX14) and proteins (PEX3, PEX14, PMP70) were suppressed in the CNS of COVID-19 patients compared to ODCs (p<0.05). SARS-CoV-2 infection of hamsters revealed viral RNA detection in the olfactory bulb at days 4 and 7 post-infection while inflammatory gene expression was upregulated in the cerebrum of infected animals by day 14 post-infection (p<0.05). Pex3 transcript levels together with catalase and PMP70 immunoreactivity were suppressed in the cerebrum of SARS-CoV-2 infected animals (p<0.05).COVID-19 induced sustained neuroinflammatory responses with peroxisome biogenesis factor suppression despite limited brainstem SARS-CoV-2 neurotropism in humans. These observations offer insights into developing biomarkers and therapies, while also implicating persistent peroxisome dysfunction as a contributor to the neurological post-acute sequelae of COVID-19. This article is protected by
González-Mesa, E;García-Fuentes, E;Carvia-Pontiasec, R;Lavado-Fernández, A;Cuenca-Marín, C;Suárez-Arana, M;Blasco-Alonso, M;Benítez-Lara, B;Mozas-Benítez, L;González-Cazorla, A;Egeberg-Neverdal, H;Jiménez-López, J;
| DOI: 10.3390/diagnostics12020245
(1) Background: Little is known about the effects of SARS-CoV-2 on the placenta, and whether the maternal inflammatory response is transmitted vertically. This research aims to provide information about the effects of SARS-CoV-2 infection on maternal and fetal immunity. (2) Methods: We have studied placental changes and humoral and cellular immunity in maternal and umbilical cord blood (UCB) samples from a group of pregnant women delivering after the diagnosis of SARS-CoV-2 infection during pregnancy. IgG and IgM SARS-CoV-2 antibodies, Interleukin 1b (IL1b), Interleukin 6 (IL6), and gamma-Interferon (IFN-γ), have been studied in the UCB samples. Lymphocyte subsets were studied according to CD3, CD8, CD4, CD34, and invariant natural Killer T cells (iNKT) markers. We used in situ hybridization techniques for the detection of viral RNA in placentas. (3) Results: During the study period, 79 pregnant women and their corresponding newborns were recruited. The main gestational age at the time of delivery was 39.1 weeks (SD 1.3). We did not find traces of the SARS-CoV-2 virus RNA in any of the analyzed placental samples. Detectable concentrations of IgG anti-SARS-CoV-2 antibodies, IL1b, IL6, and IFN-γ, in UCB were found in all cases, but IgM antibodies anti-ARS-CoV-2 were systematically undetectable. We found significant correlations between fetal CD3+ mononuclear cells and UCB IgG concentrations. We also found significant correlations between UCB IgG concentrations and fetal CD3+/CD4+, as well as CD3+/CD8+ T cells subsets. We also discovered that fetal CD3+/CD8+ cell counts were significantly higher in those cases with placental infarctions. (4) Conclusion: we have not verified the placental transfer of SARS-CoV-2. However, we have discovered that a significant immune response is being transmitted to the fetus in cases of SARS-CoV-2 maternal infection.
Diamond, M;Halfmann, P;Maemura, T;Iwatsuki-Horimoto, K;Iida, S;Kiso, M;Scheaffer, S;Darling, T;Joshi, A;Loeber, S;Foster, S;Ying, B;Whitener, B;Floyd, K;Ujie, M;Nakajima, N;Ito, M;Wright, R;Uraki, R;Li, R;Sakai, Y;Liu, Y;Larson, D;Osorio, J;Hernandez-Ortiz, J;ÄŒiuoderis, K;Florek, K;Patel, M;Bateman, A;Odle, A;Wong, LY;Wang, Z;Edara, VV;Chong, Z;Thackray, L;Ueki, H;Yamayoshi, S;Imai, M;Perlman, S;Webby, R;Seder, R;Suthar, M;Garcia-Sastre, A;Schotsaert, M;Suzuki, T;Boon, A;Kawaoka, Y;Douek, D;Moliva, J;Sullivan, N;Gagne, M;Ransier, A;Case, J;Jeevan, T;Franks, J;Fabrizio, T;DeBeauchamp, J;Kercher, L;Seiler, P;Singh, G;Warang, P;Gonzalez-Reiche, AS;Sordillo, E;van Bakel, H;Simon, V;
PMID: 34981044 | DOI: 10.21203/rs.3.rs-1211792/v1
Despite the development and deployment of antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. The recent emergence of B.1.1.529, the Omicron variant1,2, which has more than 30 mutations in the spike protein, has raised concerns for escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in pre-clinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of multiple B.1.1.529 Omicron isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2) expressing mice and hamsters. Despite modeling and binding data suggesting that B.1.1.529 spike can bind more avidly to murine ACE2, we observed attenuation of infection in 129, C57BL/6, and BALB/c mice as compared with previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. Although K18-hACE2 transgenic mice sustained infection in the lungs, these animals did not lose weight. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease, and pathology with B.1.1.529 also were milder compared to historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from multiple independent laboratories of the SAVE/NIAID network with several different B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.
Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Bearse, M;Hung, YP;Krauson, AJ;Bonanno, L;Boyraz, B;Harris, CK;Helland, TL;Hilburn, CF;Hutchison, B;Jobbagy, S;Marshall, MS;Shepherd, DJ;Villalba, JA;Delfino, I;Mendez-Pena, J;Chebib, I;Newton-Cheh, C;Stone, JR;
PMID: 33727695 | DOI: 10.1038/s41379-021-00790-1
COVID-19 has been associated with cardiac injury and dysfunction. While both myocardial inflammatory cell infiltration and myocarditis with myocyte injury have been reported in patients with fatal COVID-19, clinical-pathologic correlations remain limited. The objective was to determine the relationships between cardiac pathological changes in patients dying from COVID-19 and cardiac infection by SARS-CoV-2, laboratory measurements, clinical features, and treatments. In a retrospective study, 41 consecutive autopsies of patients with fatal COVID-19 were analyzed for the associations between cardiac inflammation, myocarditis, cardiac infection by SARS-CoV-2, clinical features, laboratory measurements, and treatments. Cardiac infection was assessed by in situ hybridization and NanoString transcriptomic profiling. Cardiac infection by SARS-CoV-2 was present in 30/41 cases: virus+ with myocarditis (n = 4), virus+ without myocarditis (n = 26), and virus- without myocarditis (n = 11). In the cases with cardiac infection, SARS-CoV-2+ cells in the myocardium were rare, with a median density of 1 cell/cm2. Virus+ cases showed higher densities of myocardial CD68+ macrophages and CD3+ lymphocytes, as well as more electrocardiographic changes (23/27 vs 4/10; P = 0.01). Myocarditis was more prevalent with IL-6 blockade than with nonbiologic immunosuppression, primarily glucocorticoids (2/3 vs 0/14; P = 0.02). Overall, SARS-CoV-2 cardiac infection was less prevalent in patients treated with nonbiologic immunosuppression (7/14 vs 21/24; P = 0.02). Myocardial macrophage and lymphocyte densities overall were positively correlated with the duration of symptoms but not with underlying comorbidities. In summary, cardiac infection with SARS-CoV-2 is common among patients dying from COVID-19 but often with only rare infected cells. Cardiac infection by SARS-CoV-2 is associated with more cardiac inflammation and electrocardiographic changes. Nonbiologic immunosuppression is associated with lower incidences of myocarditis and cardiac infection by SARS-CoV-2.
Kim, JS;Williams, KC;Kirkland, RA;Schade, R;Freeman, KG;Cawthon, CR;Rautmann, AW;Smith, JM;Edwards, GL;Glenn, TC;Holmes, PV;de Lartigue, G;de La Serre, CB;
PMID: 37380023 | DOI: 10.1016/j.molmet.2023.101764
Obesity is associated with deficits in reward which have been linked to compensatory overeating. The vagus nerve is a direct neural pathway that conveys post-ingestive feedback from the gut to the brain, including the reward regions, and vagal activation causes stereotypical reward behaviors. Chronic high fat (HF) feeding alters vagal signaling potentially dampening food-associated reward. Microbiota composition changes rapidly with HF feeding, and a HF-type microbiota is sufficient to alter vagal structure and function. However, whether microbiota-driven alterations in vagal signaling affect host appetitive feeding behavior is unknown. Here, we investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.
The American journal of pathology
Lee, YJ;Seok, SH;Lee, NY;Choi, HJ;Lee, YW;Chang, HJ;Hwang, JY;On, DI;Noh, HA;Lee, SB;Kwon, HK;Yun, JW;Shin, JS;Seo, JY;Nam, KT;Lee, H;Lee, HY;Park, JW;Seong, JK;
PMID: 37024046 | DOI: 10.1016/j.ajpath.2023.03.008
The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.