Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (41)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (9) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (6) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (5) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (3) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter

Research area

  • Inflammation (11) Apply Inflammation filter
  • Cancer (10) Apply Cancer filter
  • Infectious Disease (9) Apply Infectious Disease filter
  • HIV (8) Apply HIV filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • Infectious (3) Apply Infectious filter
  • Neuroscience (3) Apply Neuroscience filter
  • Animal Models (1) Apply Animal Models filter
  • Demodex mites (1) Apply Demodex mites filter
  • Eczema (1) Apply Eczema filter
  • Infectious Disease: HIV (1) Apply Infectious Disease: HIV filter
  • Injury (1) Apply Injury filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Mucocutaneous Leishmaniasis (1) Apply Mucocutaneous Leishmaniasis filter
  • Other: Skin (1) Apply Other: Skin filter
  • Psoriasis (1) Apply Psoriasis filter
  • Regeneration (1) Apply Regeneration filter
  • Skin (1) Apply Skin filter
  • Stem cell (1) Apply Stem cell filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (41) Apply Publications filter
IL17A mRNA staining distinguishes palmoplantar psoriasis from hyperkeratotic palmoplantar eczema in diagnostic skin biopsies

JID Innovations

2023 Feb 01

Chen, J;Murphy, M;Singh, K;Wang, A;Chow, R;Kim, S;Cohen, J;Ko, C;Damsky, W;
| DOI: 10.1016/j.xjidi.2023.100189

Acral dermatoses, including hyperkeratotic palmoplantar eczema (HPE), palmoplantar psoriasis (PP), and mycosis fungoides palmaris et plantaris (MFPP), can be challenging to diagnose clinically and histopathologically. In this setting, cytokine biomarkers may be able to help provide diagnostic clarity. We therefore evaluated interleukin (IL)-17A, interferon gamma (IFN-γ), and IL-13 expression in PP, HPE, and MFPP and compared their expression profiles to non-acral sites. We utilized biopsy specimens from the Yale Dermatopathology database, selecting cases of HPE (n=12), PP (n=8), MFPP (n=8), normal acral skin (n=9), non-acral eczema (n=10), and non-acral psoriasis (n=10) with classic clinical and histopathologic features. IL17A mRNA expression by RNA in situ hybridization differentiated PP (median score 63.1 [IQR 9.4-104.1]) from HPE (0.8 [0-6.0]; P = .003), MFPP (0.6 [0-2.6]; P = .003), and normal acral skin (0 [0-0]; P < .001). Unexpectedly, both PP and HPE demonstrated co-expression of IFNG and IL13 mRNA. In contrast, non-acral psoriasis and eczema demonstrated divergent patterns of IFNG and IL13 mRNA expression. Taken together, we show that IL17A mRNA expression may be a useful biomarker of PP, and we further demonstrate that acral dermatoses exhibit unique immunology compared to non-acral sites, with implications for clinical management.
Multiplex single-cell visualization of nucleic acids and protein during HIV infection

Nat Commun.

2017 Dec 01

Puray-Chavez M, Tedbury PR, Huber AD, Ukah OB, Yapo V, Liu D, Ji J, Wolf JJ, Engelman AN, Sarafianos SG.
PMID: 29192235 | DOI: 10.1038/s41467-017-01693-z

Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag. We use MICDDRP to visualize incoming capsid cores containing RNA and/or nascent DNA and follow reverse transcription kinetics. We also report transcriptional "bursts" of nascent RNA from integrated proviral DNA, and concomitant HIV-1, HIV-2 transcription in co-infected cells. MICDDRP can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents.

The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr

Cell Host & Microbe

2021 Apr 01

Dupont, L;Bloor, S;Williamson, J;Cuesta, S;Shah, R;Teixeira-Silva, A;Naamati, A;Greenwood, E;Sarafianos, S;Matheson, N;Lehner, P;
| DOI: 10.1016/j.chom.2021.03.001

Silencing of nuclear DNA is an essential feature of innate immune responses to invading pathogens. Early in infection, unintegrated lentiviral cDNA accumulates in the nucleus yet remains poorly expressed. In HIV-1-like lentiviruses, the Vpr accessory protein enhances unintegrated viral DNA expression, suggesting Vpr antagonizes cellular restriction. We previously showed how Vpr remodels the host proteome, identifying multiple cellular targets. We now screen these using a targeted CRISPR-Cas9 library and identify SMC5-SMC6 complex localization factor 2 (SLF2) as the Vpr target responsible for silencing unintegrated HIV-1. SLF2 recruits the SMC5/6 complex to unintegrated lentiviruses, and depletion of SLF2, or the SMC5/6 complex, increases viral expression. ATAC-seq demonstrates that Vpr-mediated SLF2 depletion increases chromatin accessibility of unintegrated virus, suggesting that the SMC5/6 complex compacts viral chromatin to silence gene expression. This work implicates the SMC5/6 complex in nuclear immunosurveillance of extrachromosomal DNA and defines its targeting by Vpr as an evolutionarily conserved antagonism.
Host IL11 Signaling Suppresses CD4+ T cell-Mediated Antitumor Responses to Colon Cancer in Mice

Cancer immunology research

2021 Apr 27

Huynh, J;Baloyan, D;Chisanga, D;Shi, W;O'Brien, M;Afshar-Sterle, S;Alorro, M;Pang, L;Williams, DS;Parslow, AC;Thilakasiri, P;Eissmann, MF;Boon, L;Masson, F;Chand, AL;Ernst, M;
PMID: 33906864 | DOI: 10.1158/2326-6066.CIR-19-1023

IL11 is a member of the IL6 family of cytokines and signals through its cognate receptor subunits, IL11RA and glycoprotein 130 (GP130), to elicit biological responses via the JAK/STAT signaling pathway. IL11 contributes to cancer progression by promoting the survival and proliferation of cancer cells, but the potential immunomodulatory properties of IL11 signaling during tumor development have thus far remained unexplored. Here, we have characterized a role for IL11 in regulating CD4+ T cell-mediated antitumor responses. Absence of IL11 signaling impaired tumor growth in a sporadic mouse model of colon cancer and syngeneic allograft models of colon cancer. Adoptive bone marrow transfer experiments and in vivo depletion studies demonstrated that the tumor-promoting activity of IL11 was mediated through its suppressive effect on host CD4+ T cells in the tumor microenvironment. Indeed, when compared with Il11ra-proficient CD4+ T cells associated with MC38 tumors, their Il11ra-deficient counterparts displayed elevated expression of mRNA encoding the antitumor mediators IFNγ and TNFα. Likewise, IL11 potently suppressed the production of proinflammatory cytokines (IFNγ, TNFα, IL6, and IL12p70) by CD4+ T cells in vitro, which we corroborated by RNAscope analysis of human colorectal cancers, where IL11RAhigh tumors showed less IFNG and CD4 expression than IL11RAlow tumors. Therefore, our results ascribe a tumor cell-extrinsic immunomodulatory role to IL11 during colon cancer development that could be amenable to an anticytokine-based therapy.See related commentary by van der Burg.
Cytokines Produced by Dendritic Cells Administered Intratumorally Correlate with Clinical Outcome in Patients with Diverse Cancers

Clin Cancer Res.

2018 Jul 17

Subbiah V, Murthy R, Hong DS, Prins RM, Hosing C, Hendricks K, Kolli D, Noffsinger L, Brown R, McGuire M, Fu S, Piha-Paul S, Naing A, Conley AP, Benjamin RS, Kaur I, Bosch ML.
PMID: 30018119 | DOI: 10.1158/1078-0432.CCR-17-2707

Abstract

Purpose: Dendritic cells (DC) initiate adaptive immune responses through the uptake and presentation of antigenic material. In preclinical studies, intratumorally injected activated DCs (aDCs; DCVax-Direct) were superior to immature DCs in rejecting tumors from mice.Experimental Design: This single-arm, open-label phase I clinical trial evaluated the safety and efficacy of aDCs, administered intratumorally, in patients with solid tumors. Three dose levels (2 million, 6 million, and 15 million aDCs per injection) were tested using a standard 3 + 3 dose-escalation trial design. Feasibility, immunogenicity, changes to the tumor microenvironment after direct injection, and survival were evaluated. We also investigated cytokine production of aDCs prior to injection.Results: In total, 39 of the 40 enrolled patients were evaluable. The injections of aDCs were well tolerated with no dose-limiting toxicities. Increased lymphocyte infiltration was observed in 54% of assessed patients. Stable disease (SD; best response) at week 8 was associated with increased overall survival. Increased secretion of interleukin (IL)-8 and IL12p40 by aDCs was significantly associated with survival (P = 0.023 and 0.024, respectively). Increased TNFα levels correlated positively with SD at week 8 (P < 0.01).Conclusions: Intratumoral aDC injections were feasible and safe. Increased production of specific cytokines was correlated with SD and prolonged survival, demonstrating a link between the functional profile of aDCs prior to injection and patient outcomes. 

Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome.

PLoS One.

2018 Jul 24

Tso FY, Kang G, Kwon EH, Julius P, Li Q, West JT, Wood C.
PMID: 30040863 | DOI: 10.1371/journal.pone.0201325

Subtype C HIV-1 is responsible for the largest proportion of people living with HIV-1 infection. However, there is limited information about the roles of the brain and its cell types as a potential sanctuary for this subtype and how the sanctuary may be affected by the administration of anti-retroviral therapy (ART). To address this issue, we collected postmortem brain tissues from ART treated HIV-1 infected Zambian individuals who experienced complete viral suppression and those who did not. Tissues from various brain compartments were collected from each individual as frozen and formalin-fixed paraffin embedded brain specimens, for detection and quantification of HIV-1 genomes and identification of the infected cell type. Genomic DNA and RNA were extracted from frozen brain tissues. The extracted DNA and RNA were then subjected to droplet digital PCR for HIV-1 quantification. RNA/DNAscope in situ hybridization (ISH) for HIV-1 was performed on formalin-fixed paraffin embedded brain tissues in conjugation with immunohistochemistry to identify the infected cell types. Droplet digital PCR revealed that HIV-1 gag DNA and RNA were detectable in half of the cases studied regardless of ART success or failure. The presence of HIV-1 lacked specific tissue compartmentalization since detection was random among various brain tissues. When combined with immunohistochemistry, RNA/DNAscope ISH demonstrated co-localization of HIV-1 DNA with CD68 expressing cells indicative of microglia or peripheral macrophage. Our study showed that brain is a potential sanctuary for subtype C HIV-1, as HIV-1 can be detected in the brain of infected individuals irrespective of ART treatment outcome and no compartmentalization of HIV-1 to specific brain compartments was evident.

Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells

Cancer cell

2022 Oct 07

Zhang, X;Zhang, C;Qiao, M;Cheng, C;Tang, N;Lu, S;Sun, W;Xu, B;Cao, Y;Wei, X;Wang, Y;Han, W;Wang, H;
PMID: 36240777 | DOI: 10.1016/j.ccell.2022.09.013

Chimeric antigen receptor (CAR) T cell therapy has limited efficacy against solid tumors, and one major challenge is T cell exhaustion. To address this challenge, we performed a candidate gene screen using a hypofunction CAR-T cell model and found that depletion of basic leucine zipper ATF-like transcription factor (BATF) improved the antitumor performance of CAR-T cells. In different types of CAR-T cells and mouse OT-1 cells, loss of BATF endows T cells with improved resistance to exhaustion and superior tumor eradication efficacy. Mechanistically, we found that BATF binds to and up-regulates a subset of exhaustion-related genes in human CAR-T cells. BATF regulates the expression of genes involved in development of effector and memory T cells, and knocking out BATF shifts the population toward a more central memory subset. We demonstrate that BATF is a key factor limiting CAR-T cell function and that its depletion enhances the antitumor activity of CAR-T cells against solid tumors.
Human Hematopoietic Stem Cell Engrafted IL-15 Transgenic NSG Mice Support Robust NK Cell Responses and Sustained HIV-1 Infection

Viruses

2023 Jan 27

Abeynaike, S;Huynh, T;Mehmood, A;Kim, T;Frank, K;Gao, K;Zalfa, C;Gandarilla, A;Shultz, L;Paust, S;
| DOI: 10.3390/v15020365

Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1.
Innate type 2 immunity controls hair follicle commensalism by Demodex mites

Immunity

2022 Aug 26

Ricardo-Gonzalez, RR;Kotas, ME;O'Leary, CE;Singh, K;Damsky, W;Liao, C;Arouge, E;Tenvooren, I;Marquez, DM;Schroeder, AW;Cohen, JN;Fassett, MS;Lee, J;Daniel, SG;Bittinger, K;Díaz, RE;Fraser, JS;Ali, N;Ansel, KM;Spitzer, MH;Liang, HE;Locksley, RM;
PMID: 36044899 | DOI: 10.1016/j.immuni.2022.08.001

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.
Mucocutaneous Leishmaniasis in a Pregnant Immigrant

Open Forum Infectious Diseases

2022 Aug 02

Briggs, N;Wei, B;Ahuja, C;Baker, C;Foppiano Palacios, C;Lee, E;O’Grady, N;Singanamala, S;Singh, K;Bandaranayake, T;Cohen, J;Damsky, W;Davis, M;Mejia, R;Nelson, C;Topal, J;Azar, M;
| DOI: 10.1093/ofid/ofac360

Cutaneous leishmaniasis is a parasitic infection that causes significant maternal morbidity, and even fetal mortality, during pregnancy, yet there are limited therapeutic options. Here, we report a case of leishmaniasis in a pregnant immigrant with exuberant mucocutaneous lesions with favorable response to liposomal amphotericin B.
Acute Appendicitis as the Initial Clinical Presentation of Primary HIV-1 Infection

Open Forum Infectious Diseases

2018 Jan 09

Schleimann MH, Leth S, Krarup AR, Mortensen J, Barstad B, Zaccarin M, Denton PW, Mohey R.
PMID: - | DOI: 10.1093/ofid/ofy006

We report a case of an adolescent who presented at our emergency department with acute abdominal pain. While the initial diagnosis was acute appendicitis, a secondary and coincidental diagnosis of primary HIV-1 infection was made. Concurrent and subsequent clinical and molecular biology findings form the basis of our argument that primary HIV-1 infection was the cause of acute appendicitis in this individual.

Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks.

Neuron.

2016 Aug 17

Yuzwa SA, Yang G, Borrett MJ, Clarke G, Cancino GI, Zahr SK, Zandstra PW, Kaplan DR, Miller FD.
PMID: 27545711 | DOI: 10.1016/j.neuron.2016.07.037

The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance, while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons,cell-surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFNγ, Neurturin (Nrtn), and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?