The American journal of pathology
Ting, C;Aspal, M;Vaishampayan, N;Huang, SK;Riemondy, KA;Wang, F;Farver, C;Zemans, RL;
PMID: 34973949 | DOI: 10.1016/j.ajpath.2021.11.014
ARDS due to COVID-19 and other etiologies results from injury to the alveolar epithelial cell (AEC) barrier resulting in noncardiogenic pulmonary edema, which causes acute respiratory failure; clinical recovery requires epithelial regeneration. During physiologic regeneration in mice, AEC2s proliferate, exit the cell cycle, and transiently assume a transitional state before differentiating into AEC1s; persistence of the transitional state is associated with pulmonary fibrosis in humans. It is unknown whether transitional cells emerge and differentiate into AEC1s without fibrosis in human ARDS and why transitional cells differentiate into AEC1s during physiologic regeneration but persist in fibrosis. We hypothesized that incomplete but ongoing AEC1 differentiation from transitional cells without fibrosis may underlie persistent barrier permeability and fatal acute respiratory failure in ARDS. Immunostaining of postmortem ARDS lungs revealed abundant transitional cells in organized monolayers on alveolar septa without fibrosis. They were typically cuboidal or partially spread, sometimes flat, and occasionally expressed AEC1 markers. Immunostaining and/or interrogation of scRNAseq datasets revealed that transitional cells in mouse models of physiologic regeneration, ARDS, and fibrosis express markers of cell cycle exit but only in fibrosis express a specific senescence marker. Thus, in severe, fatal early ARDS, AEC1 differentiation from transitional cells is incomplete, underlying persistent barrier permeability and respiratory failure, but ongoing without fibrosis; senescence of transitional cells may be associated with pulmonary fibrosis.
Liu Y, Huang Y, Liu T, Wu H, Cui H, Gautron L.
PMID: 27111742 | DOI: -
While Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by pro-inflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS; 100 μ g/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding, but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.
Pathogens (Basel, Switzerland)
Magalhães, AC;Ricardo, S;Moreira, AC;Nunes, M;Tavares, M;Pinto, RJ;Gomes, MS;Pereira, L;
PMID: 35335638 | DOI: 10.3390/pathogens11030313
The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.
Positive Retrospective SARS-CoV-2 Testing in a Case of Acute Respiratory Distress Syndrome of Unknown Etiology
Case reports in pulmonology
Burkett, A;McElwee, S;Margaroli, C;Bajpai, P;Elkholy, A;Manne, U;Wille, K;Benson, P;
PMID: 34513107 | DOI: 10.1155/2021/5484239
In order to elucidate the cause of acute respiratory distress syndrome of unknown etiology in a pre-pandemic patient, molecular techniques were used for detection of SARS-CoV-2. We used a SARS-CoV-2 nucleocapsid protein immunofluorescence stain to retrospectively identify an individual with diffuse alveolar damage on autopsy histology who had negative respiratory virus panel results in February, 2020, in Birmingham, Alabama. In situ hybridization for SARS-CoV-2 RNA revealed evidence of widespread multiorgan SARS-CoV-2 infection. This death antecedes the first reported death of a State of Alabama resident diagnosed with SARS-CoV-2 by 26 days.
Serafini, RA;Frere, JJ;Zimering, J;Giosan, IM;Pryce, KD;Golynker, I;Panis, M;Ruiz, A;tenOever, BR;Zachariou, V;
PMID: 37159520 | DOI: 10.1126/scisignal.ade4984
Although largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and chronic phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster model to characterize and compare the effects of infection with SARS-CoV-2 and influenza A virus (IAV) on the sensory nervous system. We detected SARS-CoV-2 transcripts but no infectious material in the cervical and thoracic spinal cord and dorsal root ganglia (DRGs) within the first 24 hours of intranasal virus infection. SARS-CoV-2-infected hamsters exhibited mechanical hypersensitivity that was milder but prolonged compared with that observed in IAV-infected hamsters. RNA sequencing analysis of thoracic DRGs 1 to 4 days after infection suggested perturbations in predominantly neuronal signaling in SARS-CoV-2-infected animals as opposed to type I interferon signaling in IAV-infected animals. Later, 31 days after infection, a neuropathic transcriptome emerged in thoracic DRGs from SARS-CoV-2-infected animals, which coincided with SARS-CoV-2-specific mechanical hypersensitivity. These data revealed potential targets for pain management, including the RNA binding protein ILF3, which was validated in murine pain models. This work elucidates transcriptomic signatures in the DRGs triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities.
Rabbani, MY;Rappaport, J;Gupta, MK;
PMID: 35203260 | DOI: 10.3390/cells11040611
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an extremely contagious disease whereby the virus damages the host's respiratory tract via entering through the ACE2 receptor. Cardiovascular disorder is being recognized in the majority of COVID-19 patients; yet, the relationship between SARS-CoV-2 and heart failure has not been established. In the present study, SARS-CoV-2 infection was induced in the monkey model. Thereafter, heart tissue samples were collected, and pathological changes were analyzed in the left ventricular tissue by hematoxylin and eosin, trichrome, and immunohistochemical staining specific to T lymphocytes and macrophages. The findings revealed that SARS-CoV-2 infection induces several pathological changes in the heart, which cause cardiomyocyte disarray, mononuclear infiltrates of inflammatory cells, and hypertrophy. Furthermore, collagen-specific staining showed the development of cardiac fibrosis in the interstitial and perivascular regions in the hearts of infected primates. Moreover, the myocardial tissue samples displayed multiple foci of inflammatory cells positive for T lymphocytes and macrophages within the myocardium. These findings suggest the progression of the disease, which can lead to the development of severe complications, including heart failure. Additionally, SARS-CoV-2 antigen staining detected the presence of virus particles in the myocardium. Thus, we found that SARS-CoV-2 infection is characterized by an exaggerated inflammatory immune response in the heart, which possibly contributes to myocardial remodeling and subsequent fibrosis.
McMahan, K;Giffin, V;Tostanoski, LH;Chung, B;Siamatu, M;Suthar, MS;Halfmann, P;Kawaoka, Y;Piedra-Mora, C;Jain, N;Ducat, S;Kar, S;Andersen, H;Lewis, MG;Martinot, AJ;Barouch, DH;
PMID: 35313451 | DOI: 10.1016/j.medj.2022.03.004
The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters.Hamsters were inoculated with either SARS-CoV-2 Omicron or other SARS-CoV-2 variants. Animals were followed for weight loss, and upper and lower respiratory tract tissues were assessed for viral loads and histopathology.Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection led to substantial viral replication in both the upper and lower respiratory tracts but demonstrated lower viral loads in lung parenchyma and reduced pulmonary pathology compared with WA1/2020 infection.These data suggest that the SARS-CoV-2 Omicron variant may result in robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.Funding for this study was provided by NIH grant CA260476, the Massachusetts Consortium for Pathogen Readiness, the Ragon Institute, and the Musk Foundation.
McGonagle, D;Kearney, M;O'Regan, A;O'Donnell, J;Quartuccio, L;Watad, A;Bridgewood, C;
| DOI: 10.1016/S2665-9913(21)00322-2
In patients with moderate-to-severe COVID-19 pneumonia, an aberrant post-viral alveolitis with excessive inflammatory responses and immunothrombosis underpins use of immunomodulatory therapy (eg, corticosteroids and interleukin-6 receptor antagonism). By contrast, immunosuppression in individuals with mild COVID-19 who do not require oxygen therapy or in those with critical disease undergoing prolonged ventilation is of no proven benefit. Furthermore, a window of opportunity is thought to exist for timely immunosuppression in patients with moderate-to-severe COVID-19 pneumonia shortly after clinical presentation. In this Viewpoint, we explore the shortcomings of a universal immunosuppression approach in patients with moderate-to-severe COVID-19 due to disease heterogeneity related to ongoing SARS-CoV-2 replication, which can manifest as RNAaemia in some patients treated with immunotherapy. By contrast, immunomodulatory therapy has overall benefits in patients with rapid SARS-CoV-2 clearance, via blunting of multifaceted, excessive innate immune responses in the lungs, potentially uncontrolled T-cell responses, possible autoimmune responses, and immunothrombosis. We highlight this therapeutic dichotomy to better understand the immunopathology of moderate-to-severe COVID-19, particularly the role of RNAaemia, and to refine therapy choices.
Porniece Kumar, M;Cremer, AL;Klemm, P;Steuernagel, L;Sundaram, S;Jais, A;Hausen, AC;Tao, J;Secher, A;Pedersen, TÅ;Schwaninger, M;Wunderlich, FT;Lowell, BB;Backes, H;Brüning, JC;
PMID: 34931084 | DOI: 10.1038/s42255-021-00499-0
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CM, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL.
PMID: 28263184 | DOI: 10.1172/JCI88641
Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.
Neutrophil-epithelial interactions augment infectivity and pro-inflammatory responses to SARS-CoV-2 infection
bioRxiv : the preprint server for biology
Calvert, BA;Quiroz, EJ;Lorenzana, Z;Doan, N;Kim, S;Senger, CN;Wallace, WD;Salomon, MP;Henley, JE;Ryan, AL;
PMID: 34401877 | DOI: 10.1101/2021.08.09.455472
In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre-existing co-morbidities, correlating to incidence of severe COVID-19, are associated with chronic airway neutrophilia and examination of COVID-19 lung tissue revealed a series of epithelial pathologies associated with infiltration and activation of neutrophils. To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory response to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. We discovered that SARS-CoV-2 infection of the airway epithelium alone does not result in a notable release of pro-inflammatory cytokines, however in the presence of neutrophils, the inflammatory response is both polarized and significantly augmented, epithelial barrier integrity in impaired and viral load of the airway epithelium increased. This study reveals a key role for neutrophil-epithelial interactions in determining inflammation, infectivity, and outcomes in response to SARS-CoV-2 infection.We have developed a model to study neutrophil-epithelial interactions which better reflects the in vivo situation than monocultures Neutrophils significantly augment SARS-CoV-2 mediated, pro-inflammatory cytokine release from the epithelium indicating a key interactionSARS-CoV-2 infection leads to a polarized inflammatory response in differentiated airway epitheliumDisruption of the epithelial barrier via addition of neutrophils or cytokines leads to increased infectionStudy reveals a key role for neutrophil-epithelial interactions in determining outcome/infectivity.
Shi, Z;Stornetta, DS;Stornetta, RL;Brooks, VL;
PMID: 34937769 | DOI: 10.1523/ENEURO.0404-21.2021
The arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII); however, the cellular mechanisms and downstream neurocircuitry are unclear. Here we show that ArcN AngII increases AP in female rats via two phases, both of which are mediated via activation of AngII type 1 receptors (AT1aR): initial vasopressin-induced vasoconstriction, followed by slowly developing increases in sympathetic nerve activity (SNA) and heart rate (HR). In male rats, ArcN AngII evoked a similarly slow increase in SNA, but the initial pressor response was variable. In females, the effects of ArcN AngII varied during the estrus cycle, with significant increases in SNA, HR, and AP occurring during diestrus and estrus, but only increased AP during proestrus. Pregnancy markedly increased the expression of AT1aR in the ArcN with parallel substantial AngII-induced increases in SNA and MAP. In both sexes, the sympathoexcitation relied on suppression of tonic ArcN sympathoinhibitory Neuropeptide Y inputs, and activation of pro-opiomelanocortin (POMC) projections, to the paraventricular nucleus (PVN). Few or no NPY or POMC neurons expressed the AT1aR, suggesting that AngII increases AP and SNA at least in part indirectly via local interneurons, which express tyrosine hydroxylase (TH) and VGat (i.e. GABAergic). ArcN TH neurons release GABA locally, and central AT1aR and TH neurons mediate stress responses; therefore, we propose that TH AT1aR neurons are well situated to locally coordinate the regulation of multiple modalities within the ArcN in response to stress.SIGNIFICANCEThe arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII). Here we show that ArcN AngII activates AT1aR to increase AP in male and female rats by slowly increasing sympathetic nerve activity. In females, ArcN AngII also evoked an initial pressor response mediated by vasopressin-induced vasoconstriction. Pregnant and estrus females responded more than males, in association with higher ArcN AT1aR expression. AT1aR were identified in ArcN interneurons that express tyrosine hydroxylase (TH) and GABA. Since brain AT1aR and TH mediate stress responses, ArcN AT1aR TH neurons are well situated to locally coordinate autonomic, hormonal, and behavioral responses to stress.