Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (188)
  • Image gallery (0)
Refine Probe List

Content for comparison

RNAscope™ 2.5 LS Probe - Hs-MYC-C3
RNAscope™ 2.5 LS Probe - Hs-MYC-No-XMm-C3
Compare SelectedClear

Gene

  • TBD (1413) Apply TBD filter
  • (-) Remove Lgr5 filter Lgr5 (151)
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • (-) Remove Npy filter Npy (32)
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (27) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (25) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (21) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (20) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (14) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (14) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (12) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (8) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope HiPlex v2 assay (2) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • Cancer (61) Apply Cancer filter
  • Stem Cells (59) Apply Stem Cells filter
  • Neuroscience (29) Apply Neuroscience filter
  • Development (22) Apply Development filter
  • Stem cell (17) Apply Stem cell filter
  • Other (11) Apply Other filter
  • Inflammation (8) Apply Inflammation filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • Developmental (3) Apply Developmental filter
  • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
  • Obesity (2) Apply Obesity filter
  • Cardiac (1) Apply Cardiac filter
  • Cell transcriptomics (1) Apply Cell transcriptomics filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Colitis (1) Apply Colitis filter
  • diabetes (1) Apply diabetes filter
  • Diet (1) Apply Diet filter
  • Endocrinology (1) Apply Endocrinology filter
  • Gastro (1) Apply Gastro filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Hepatitus E (1) Apply Infectious Disease: Hepatitus E filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Keratin (1) Apply Keratin filter
  • lncRNA (1) Apply lncRNA filter
  • Metabolism (1) Apply Metabolism filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Nueroscience (1) Apply Nueroscience filter
  • Organoid (1) Apply Organoid filter
  • Organoids (1) Apply Organoids filter
  • Other: Blood Vessels (1) Apply Other: Blood Vessels filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Immunity (1) Apply Other: Immunity filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Prostate (1) Apply Other: Prostate filter
  • Other:Hypertension (1) Apply Other:Hypertension filter
  • Pulmonology (1) Apply Pulmonology filter
  • Radiation enteritis (1) Apply Radiation enteritis filter
  • Radiotherapy (1) Apply Radiotherapy filter
  • Regeneration (1) Apply Regeneration filter
  • Reproductive Health (1) Apply Reproductive Health filter
  • scRNAseq (1) Apply scRNAseq filter
  • Signalling (1) Apply Signalling filter
  • Single Cell (1) Apply Single Cell filter
  • therapeutics (1) Apply therapeutics filter
  • Tumourigenesis (1) Apply Tumourigenesis filter

Category

  • Publications (188) Apply Publications filter
Leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 expression and clinicopathological features of colorectal neuroendocrine neoplasms

Pathol Int.

2018 Jul 24

Nakajima T, Uehara T, Kobayashi Y, Kinugawa Y, Yamanoi K, Maruyama Y, Suga T, Ota H.
PMID: 30043418 | DOI: 10.1111/pin.12707

LGR5 is expressed in various tumors and has been identified as a putative intestinal stem cell marker. Here we investigated LGR5 expression in colorectal neuroendocrine neoplasms and analyzed the correlation with pathological characteristics. We evaluated the clinicopathological features of 8 neuroendocrine tumor (NET) grade 1 (NET G1), 4 NET Grade 2 (NET G2), and 8 NET Grade 3 (NET G3; also termed neuroendocrine carcinoma, or NEC) cases. We examined LGR5 expression using an RNAscope, a newly developed RNA in situ hybridization technique, with a tissue microarray of the neuroendocrine neoplasm samples. LGR5 staining in individual tumor cells was semi-quantitatively scored using an H-score scale. We also performed a combination of LGR5 RNA in situ hybridization and synaptophysin immunohistochemistry. All cases contained tumor cells with some LGR5-positive dots. For all cases, H-scores showed a positive correlation with nuclear beta-catenin expression. In the NEC group, there was a strong positive correlation between H-score and beta-catenin expression. Our findings suggest that LGR5 may serve as a stem cell marker in NEC, as is the case in colon adenocarcinoma. The positive correlation between H-score and beta-catenin expression suggests that LGR5 expression might be affected by beta-catenin expression in neuroendocrine neoplasms and especially in NEC.

Partial male-to-female reprogramming of mouse fetal testis by sertoli cell ablation

Development (Cambridge, England)

2023 Jun 28

Imaimatsu, K;Hiramatsu, R;Tomita, A;Itabashi, H;Kanai, Y;
PMID: 37376880 | DOI: 10.1242/dev.201660

Temporal transcription profiles of fetal testes with Sertoli cell ablation were examined in 4-day culture using a diphtheria toxin (DT)-dependent cell knockout system in AMH-TRECK transgenic (Tg) mice. RNA analysis revealed that ovarian-specific genes, including Foxl2, were ectopically expressed in DT-treated Tg testis explants initiated at embryonic days 12.5-13.5. FOXL2-positive cells were ectopically observed in two testicular regions-near the testicular surface epithelia and around its adjacent mesonephros. The surface FOXL2-positive cells, together with ectopic expression of Lgr5 and Gng13 (markers of ovarian cords), were derived from the testis epithelia/subepithelia, whereas another FOXL2-positive population was the 3βHSD-negative stroma near the mesonephros. In addition to high expression of Fgfr1/Fgfr2 and heparan sulfate proteoglycan (a reservoir for FGF ligand) in these two sites, exogenous FGF9 additives repressed DT-dependent Foxl2 upregulation in Tg testes. These findings imply retention of Foxl2 inducibility in the surface epithelia and peri-mesonephric stroma of the testicular parenchyma, in which certain paracrine signals, including FGF9 derived from fetal Sertoli cells, repress feminization in these two sites of the early fetal testis.
Neurons in the dorsomedial hypothalamus promote, prolong, and deepen torpor in the mouse

The Journal of neuroscience : the official journal of the Society for Neuroscience

2022 Apr 19

Ambler, M;Hitrec, T;Wilson, A;Cerri, M;Pickering, A;
PMID: 35440490 | DOI: 10.1523/JNEUROSCI.2102-21.2022

Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular projections from the preoptic area of the hypothalamus (POA) to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor. We used activity dependent genetic TRAPing techniques to target DMH neurons that were active during natural torpor bouts in female mice. Chemogenetic reactivation of torpor-TRAPed DMH neurons in calorie-restricted mice promoted torpor, resulting in longer and deeper torpor bouts. Chemogenetic inhibition of torpor-TRAPed DMH neurons did not block torpor entry, suggesting a modulatory role for the DMH in the control of torpor. This work adds to the evidence that the POA and the DMH form part of a circuit within the mouse hypothalamus that controls entry into daily torpor.SIGNIFICANCEDaily heterotherms such as mice employ torpor to cope with environments in which the supply of metabolic fuel is not sufficient for the maintenance of normothermia. Daily torpor involves reductions in body temperature, as well as active suppression of heart rate and metabolism. How the central nervous system controls this profound deviation from normal homeostasis is not known, but a projection from the preoptic area to the dorsomedial hypothalamus has recently been implicated. We demonstrate that the dorsomedial hypothalamus contains neurons that are active during torpor. Activity in these neurons promotes torpor entry and maintenance, but their activation alone does not appear to be sufficient for torpor entry.
Detection of viral hepatitis E in clinical liver biopsies.

Histopathology

2017 May 24

Prost S, Crossan CL, Dalton HR, De Man RA, Kamar N, Selves J, Dhaliwal C, Scobie L, Bellamy COC.
PMID: 28543644 | DOI: 10.1111/his.13266

Abstract

AIMS:

to determine the relative utility of in situ testing for hepatitis E virus (HEV) RNA and paraffin section PCR to diagnose HEV infection in paraffin-embedded clinical liver biopsies, and to correlate with clinico-pathological characteristics.

METHODS AND RESULTS:

We evaluated in situ and quantitative PCR (qPCR)-based approaches to identifying HEV in clinical liver biopsies from infected patients from multiple centers, correlating with clinical setting (immunocompetent, allograft or immunosuppressed native liver) and histologic findings. 36 biopsies from 29 patients had histologic data, of which 27 and 23 biopsies had satisfactory material for in situ RNA testing and tissue qPCR respectively. Both approaches specifically identified HEV infection, but tissue qPCR was significantly more sensitive than in situ testing (P=0.035). In immunocompetent but not immunosuppressed patients the tissue qPCR yield correlated with the severity of lobular hepatitis (rho=0.94, P<0.001). qPCR viral yield was comparably high in allografts and immunosuppressed native livers and significantly greater than with native liver infection. Immunosuppressed patients showed reduced severity of hepatitis and cholestatic changes, compared with immunocompetent patients. Indeed, HEV-infected liver allografts could show minimal hepatitis for many months. In individual cases each technique was useful when serum was not available to retrospectively identify chronic infection (in biopsies taken 4-31 months before diagnosis), to identify persistent/residual infection when contemporary serum PCR was negative and to identify cleared infection.

CONCLUSIONS:

qPCR is better than in situ RNA testing to identify HEV infection in paraffin-embedded liver biopsies and has diagnostic utility in selected settings.

LAT1 expression influences Paneth cell number and tumor development in ApcMin/+ mice

Journal of gastroenterology

2023 Feb 05

Sui, Y;Hoshi, N;Ohgaki, R;Kong, L;Yoshida, R;Okamoto, N;Kinoshita, M;Miyazaki, H;Ku, Y;Tokunaga, E;Ito, Y;Watanabe, D;Ooi, M;Shinohara, M;Sasaki, K;Zen, Y;Kotani, T;Matozaki, T;Tian, Z;Kanai, Y;Kodama, Y;
PMID: 36739585 | DOI: 10.1007/s00535-023-01960-5

Amino acid transporters play an important role in supplying nutrition to cells and are associated with cell proliferation. L-type amino acid transporter 1 (LAT1) is highly expressed in many types of cancers and promotes tumor growth; however, how LAT1 affects tumor development is not fully understood.To investigate the role of LAT1 in intestinal tumorigenesis, mice carrying LAT1 floxed alleles that also expressed Cre recombinase from the promoter of gene encoding Villin were crossed to an ApcMin/+ background (LAT1fl/fl; vil-cre; ApcMin/+), which were subject to analysis; organoids derived from those mice were also analyzed.This study showed that LAT1 was constitutively expressed in normal crypt base cells, and its conditional deletion in the intestinal epithelium resulted in fewer Paneth cells. LAT1 deletion reduced tumor size and number in the small intestine of ApcMin/+ mice. Organoids derived from LAT1-deleted ApcMin/+ intestinal crypts displayed fewer spherical organoids with reduced Wnt/β-catenin target gene expression, suggesting a low tumor-initiation capacity. Wnt3 expression was decreased in the absence of LAT1 in the intestinal epithelium, suggesting that loss of Paneth cells due to LAT1 deficiency reduced the risk of tumor initiation by decreasing Wnt3 production.LAT1 affects intestinal tumor development in a cell-extrinsic manner through reduced Wnt3 expression in Paneth cells. Our findings may partly explain how nutrient availability can affect the risk of tumor development in the intestines.
Arcuate NPY is involved in salt-induced hypertension via modulation of paraventricular vasopressin and brain-derived neurotrophic factor

Journal of cellular physiology

2022 Mar 21

Zhang, CL;Lin, YZ;Wu, Q;Yan, C;Wong, MW;Zeng, F;Zhu, P;Bowes, K;Lee, K;Zhang, X;Song, ZY;Lin, S;Shi, YC;
PMID: 35312067 | DOI: 10.1002/jcp.30719

Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt-induced hypertension. Here, we demonstrate that wild-type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY-GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain-derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV-Cre recombinase into the Arc only of the NPY-targeted mutant mice carrying a loxP-flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt-dependent blood pressure. In summary, our study uncovers an important Arc NPY-originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.
Advanced detection strategies for cardiotropic virus infection in a cohort study of heart failure patients

Laboratory investigation; a journal of technical methods and pathology

2021 Oct 04

Hanson, PJ;Liu-Fei, F;Minato, TA;Hossain, AR;Rai, H;Chen, VA;Ng, C;Ask, K;Hirota, JA;McManus, BM;
PMID: 34608239 | DOI: 10.1038/s41374-021-00669-4

The prevalence and contribution of cardiotropic viruses to various expressions of heart failure are increasing, yet primarily underappreciated and underreported due to variable clinical syndromes, a lack of consensus diagnostic standards and insufficient clinical laboratory tools. In this study, we developed an advanced methodology for identifying viruses across a spectrum of heart failure patients. We designed a custom tissue microarray from 78 patients with conditions commonly associated with virus-related heart failure, conditions where viral contribution is typically uncertain, or conditions for which the etiological agent remains suspect but elusive. Subsequently, we employed advanced, highly sensitive in situ hybridization to probe for common cardiotropic viruses: adenovirus 2, coxsackievirus B3, cytomegalovirus, Epstein-Barr virus, hepatitis C and E, influenza B and parvovirus B19. Viral RNA was detected in 46.4% (32/69) of heart failure patients, with 50% of virus-positive samples containing more than one virus. Adenovirus 2 was the most prevalent, detected in 27.5% (19/69) of heart failure patients, while in contrast to previous reports, parvovirus B19 was detected in only 4.3% (3/69). As anticipated, viruses were detected in 77.8% (7/9) of patients with viral myocarditis and 37.5% (6/16) with dilated cardiomyopathy. Additionally, viruses were detected in 50% of patients with coronary artery disease (3/6) and hypertrophic cardiomyopathy (2/4) and in 28.6% (2/7) of transplant rejection cases. We also report for the first time viral detection within a granulomatous lesion of cardiac sarcoidosis and in giant cell myocarditis, conditions for which etiological agents remain unknown. Our study has revealed a higher than anticipated prevalence of cardiotropic viruses within cardiac muscle tissue in a spectrum of heart failure conditions, including those not previously associated with a viral trigger or exacerbating role. Our work forges a path towards a deeper understanding of viruses in heart failure pathogenesis and opens possibilities for personalized patient therapeutic approaches.
RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis.

Gut.

2016 Aug 10

Hilkens J, Timmer NC, Boer M, Ikink GJ, Schewe M, Sacchetti A, Koppens MA, Song JY, Bakker ER.
PMID: 27511199 | DOI: 10.1136/gutjnl-2016-311606

Abstract

OBJECTIVE:

The gross majority of colorectal cancer cases results from aberrant Wnt/β-catenin signalling through adenomatous polyposis coli (APC) or CTNNB1 mutations. However, a subset of human colon tumours harbour, mutually exclusive with APC and CTNNB1 mutations, gene fusions in RSPO2 or RSPO3, leading to enhanced expression of these R-spondin genes. This suggested that RSPO activation can substitute for the most common mutations as an alternative driver for intestinal cancer. Involvement of RSPO3 in tumour growth was recently shown in RSPO3-fusion-positive xenograft models. The current study determines the extent into which solely a gain in RSPO3 actually functions as a driver of intestinal cancer in a direct, causal fashion, and addresses the in vivo activities of RSPO3 in parallel.

DESIGN:

We generated a conditional Rspo3 transgenic mouse model in which the Rspo3 transgene is expressed upon Cre activity. Cre is provided by cross-breeding with Lgr5-GFP-CreERT2 mice.

RESULTS:

Upon in vivo Rspo3 expression, mice rapidly developed extensive hyperplastic, adenomatous and adenocarcinomatous lesions throughout the intestine. RSPO3 induced the expansion of Lgr5+ stem cells, Paneth cells, non-Paneth cell label-retaining cells and Lgr4+ cells, thus promoting both intestinal stem cell and niche compartments. Wnt/β-catenin signalling was modestly increased upon Rspo3 expression and mutant Kras synergised with Rspo3 in hyperplastic growth.

CONCLUSIONS:

We provide in vivo evidence that RSPO3 stimulates the crypt stem cell and niche compartments and drives rapid intestinal tumorigenesis. This establishes RSPO3 as a potent driver of intestinal cancer and proposes RSPO3 as a candidate target for therapy in patients with colorectal cancer harbouring RSPO3 fusions.

Dorsal BNST α2A-adrenergic receptors produce HCN-dependent excitatory actions that initiate anxiogenic behaviors.

J Neurosci.

2018 Aug 27

Harris NA, Isaac AT, Günther A, Merkel K, Melchior J, Xu M, Eguakun E, Perez R, Nabit BP, Flavin S, Gilsbach R, Shonesy B, Hein L, Abel T, Baumann A, Matthews R, Centanni SW, Winder DG.
PMID: 30150361 | DOI: 10.1523/JNEUROSCI.0963-18.2018

Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α2A-adrenergic receptors (α2A-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α2A-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α2A-ARs play important roles in stress-responses, but their cellular mechanisms of action are unclear. In humans, the α2A-AR agonist guanfacine reduces overall craving and uncouples craving from stress yet minimally affects relapse, potentially due to competing actions in the brain. Here we show that heteroceptor α2A-ARs postsynaptically enhance dorsal BNST (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, as inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine-N-oxide activation of the Gi-coupled DREADD hM4Di in dBNST neurons, and its activation elicits anxiety-like behavior in the elevated plus maze. Together, this data provides a framework for elucidating cell-specific actions of GPCR signaling and provides a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction.SIGNIFICANCE STATEMENTStress impacts the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here we show that guanfacine increases dBNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation (HCN) channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest 1) that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons, and 2) these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting care must be taken regarding interpretation of data obtained with these tools.

Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo.

Stem Cell Reports. 2015 Jun 3.

Finkbeiner SR, Hill DR, Altheim CH, Dedhia PH, Taylor MJ, Tsai YH, Chin AM, Mahe MM, Watson CL, Freeman JJ, Nattiv R, Thomson M, Klein OD, Shroyer NF, Helmrath MA, Teitelbaum DH, Dempsey PJ, Spence JR.
PMID: 26067134

Human intestinal organoids (HIOs) are a tissue culture model in which small intestine-like tissue is generated from pluripotent stem cells. By carrying out unsupervised hierarchical clustering of RNA-sequencing data, we demonstrate that HIOs most closely resemble human fetal intestine. We observed that genes involved in digestive tract development are enriched in both fetal intestine and HIOs compared to adult tissue, whereas genes related to digestive function and Paneth cell host defense are expressed at higher levels in adult intestine. Our study also revealed that the intestinal stem cell marker OLFM4 is expressed at very low levels in fetal intestine and in HIOs, but is robust in adult crypts. We validated our findings using in vivo transplantation to show that HIOs become more adult-like after transplantation. Our study emphasizes important maturation events that occur in the intestine during human development and demonstrates that HIOs can be used to model fetal-to-adult maturation.
Distribution of intestinal stem cell markers in colorectal precancerous lesions

Histopathology (2015).

Jang BG, Kim HS, Kim KJ, Rhee YY, Kim WH, Kang GH.
PMID: 10.1111/his.12787

Abstract Aims Intestinal stem cell (ISC) markers such as LGR5, ASCL2, EPHB2 and OLFM4 and their clinical implications have been extensively studied in colorectal cancers (CRCs). However, little is known about their expression in precancerous lesions of CRCs. Here, we investigated the expression and distribution of ISC markers in serrated polyps and conventional adenomas. Methods and results RT-PCR analysis revealed that all ISC markers were significantly upregulated in conventional adenomas with low grade dysplasia (CALGs) compared with other lesions. RNA in situ hybridization confirmed that CALGs exhibited strong and diffuse expression of all ISC markers, which indicate a stem cell-like phenotype. However, normal colonic mucosa hyperplastic polyps and sessile serrated adenomas harbored LGR5+ cells that were confined to the crypt base and demonstrated an organized expression of ISC markers. Notably, in traditional serrated adenomas, expression of LGR5 and ASCL2 was localized to the ectopic crypts as in the normal crypts, but expression of EPHB2 and OLFM4 was distributed in a diffuse manner, which is suggestive of a progenitor-like features. Conclusions The expression and distribution profile of ISC markers possibly provides insights into the organization of stem and progenitor-like cells in each type of precancerous lesion of CRC
Intestinal Apc-inactivation induces HSP25 dependency

EMBO molecular medicine

2022 Nov 02

van Neerven, SM;Smit, WL;van Driel, MS;Kakkar, V;de Groot, NE;Nijman, LE;Elbers, CC;Léveillé, N;Heijmans, J;Vermeulen, L;
PMID: 36321561 | DOI: 10.15252/emmm.202216194

The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored. In order to investigate the role of molecular chaperones in driving CRC initiation, we captured the transcriptomic profiles of murine wild type and Apc-mutant organoids during active transformation. We discovered a strong transcriptional upregulation of Hspb1, which encodes small heat shock protein 25 (HSP25). We reveal an indispensable role for HSP25 in facilitating Apc-driven transformation, using both in vitro organoid cultures and mouse models, and demonstrate that chemical inhibition of HSP25 using brivudine reduces the development of premalignant adenomas. These findings uncover a hitherto unknown vulnerability in intestinal transformation that could be exploited for the development of chemopreventive strategies in high-risk individuals.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?