Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (107)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • (-) Remove VGAT filter VGAT (58)
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • (-) Remove ZIKV filter ZIKV (46)
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (23) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (22) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (21) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (67) Apply Neuroscience filter
  • Infectious Disease (42) Apply Infectious Disease filter
  • Development (4) Apply Development filter
  • Inflammation (4) Apply Inflammation filter
  • Pain (4) Apply Pain filter
  • Infectious (3) Apply Infectious filter
  • Behavior (2) Apply Behavior filter
  • CGT (2) Apply CGT filter
  • Other (2) Apply Other filter
  • Stem cell (2) Apply Stem cell filter
  • Allergy (1) Apply Allergy filter
  • Anxiety (1) Apply Anxiety filter
  • Cancer (1) Apply Cancer filter
  • Chronic Itch (1) Apply Chronic Itch filter
  • diabetes (1) Apply diabetes filter
  • Extinction Memory (1) Apply Extinction Memory filter
  • Feeding (1) Apply Feeding filter
  • Immune Cells (1) Apply Immune Cells filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • Metabolism (1) Apply Metabolism filter
  • Obesity (1) Apply Obesity filter
  • Other: Anxiety (1) Apply Other: Anxiety filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Seizures (1) Apply Seizures filter
  • Sleep (1) Apply Sleep filter
  • Zika (1) Apply Zika filter
  • Zika Virus (1) Apply Zika Virus filter

Category

  • Publications (107) Apply Publications filter
Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons

Molecular Metabolism

2018 May 08

Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM.
PMID: - | DOI: 10.1016/j.molmet.2018.05.001

Abstract

Objectives

Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons.

Methods

MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference.

Results

We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance.

Conclusions

Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.

NPFF Decreases Activity of Human Arcuate NPY Neurons: A Study in Embryonic-Stem-Cell-Derived Model

International journal of molecular sciences

2022 Mar 17

Torz, L;Niss, K;Lundh, S;Rekling, JC;Quintana, CD;Frazier, SED;Mercer, AJ;Cornea, A;Bertelsen, CV;Gerstenberg, MK;Hansen, AMK;Guldbrandt, M;Lykkesfeldt, J;John, LM;Villaescusa, JC;Petersen, N;
PMID: 35328681 | DOI: 10.3390/ijms23063260

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.
Transplacental Zika virus transmission in ex vivo perfused human placentas

PLoS neglected tropical diseases

2022 Apr 01

Langerak, T;Broekhuizen, M;Unger, PA;Tan, L;Koopmans, M;van Gorp, E;Danser, AHJ;Rockx, B;
PMID: 35442976 | DOI: 10.1371/journal.pntd.0010359

A Zika virus (ZIKV) infection during pregnancy can result in severe birth defects such as microcephaly. To date, it is incompletely understood how ZIKV can cross the human placenta. Furthermore, results from studies in pregnant mice and non-human primates are conflicting regarding the role of cross-reactive dengue virus (DENV) antibodies on transplacental ZIKV transmission. Elucidating how ZIKV can cross the placenta and which risk factors contribute to this is important for risk assessment and for potential intervention strategies for transplacental ZIKV transmission. In this study we use an ex vivo human placental perfusion model to study transplacental ZIKV transmission and the effect that cross-reactive DENV antibodies have on this transmission. By using this model, we demonstrate that DENV antibodies significantly increase ZIKV uptake in perfused human placentas and that this increased uptake is neonatal Fc-receptor-dependent. Furthermore, we show that cross-reactive DENV antibodies enhance ZIKV infection in term human placental explants and in primary fetal macrophages but not in primary trophoblasts. Our data supports the hypothesis that presence of cross-reactive DENV antibodies could be an important risk factor for transplacental ZIKV transmission. Furthermore, we demonstrate that the ex vivo placental perfusion model is a relevant and animal friendly model to study transplacental pathogen transmission.
Identification of a Brainstem Circuit Controlling Feeding

Cell.

2017 Jul 27

Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM.
PMID: 28753423 | DOI: 10.1016/j.cell.2017.06.045

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.

A novel sheet-like virus particle array is a hallmark of Zika virus infection.

Emerg Microbes Infect.

2018 Apr 25

Liu J, Kline BA, Kenny TA, Smith DR, Soloveva V, Beitzel B, Pang S, Lockett S, Hess HF, Palacios G, Kuhn JH, Sun MG, Zeng X.
PMID: 29691373 | DOI: 10.1038/s41426-018-0071-8

Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.

A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance

Nature communications

2022 Dec 03

Yan, JJ;Ding, XJ;He, T;Chen, AX;Zhang, W;Yu, ZX;Cheng, XY;Wei, CY;Hu, QD;Liu, XY;Zhang, YL;He, M;Xie, ZY;Zha, X;Xu, C;Cao, P;Li, H;Xu, XH;
PMID: 36463200 | DOI: 10.1038/s41467-022-35211-7

Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
Whole-brain monosynaptic inputs and outputs of leptin receptor b neurons of the nucleus tractus solitarii in mice

Brain research bulletin

2023 Jun 20

Sun, L;Zhu, M;Wang, M;Hao, Y;Hao, Y;Jing, X;Yu, H;Shi, Y;Zhang, X;Wang, S;Yuan, F;Yuan, XS;
PMID: 37348822 | DOI: 10.1016/j.brainresbull.2023.110693

The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTSLepRb neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing. However, the monosynaptic inputs and outputs of NTSLepRb neurons in whole-brain mapping remain to be elucidated. Therefore, the exploration of its whole-brain connection system may provide strong support for comprehensively understanding the physiological and pathological functions of NTSLepRb neurons. In the present study, we used a cell type-specific, modified rabies virus and adeno-associated virus with the Cre-loxp system to map monosynaptic inputs and outputs of NTSLepRb neurons in LepRb-Cre mice. The results showed that NTSLepRb neurons received inputs from 48 nuclei in the whole brain from five brain regions, including especially the medulla. We found that NTSLepRb neurons received inputs from nuclei associated with respiration, such as the pre-Bötzinger complex, ambiguus nucleus, and parabrachial nucleus. Interestingly, some brain areas related to cardiovascular regulation-i.e., the ventrolateral periaqueductal gray and locus coeruleus-also sent a small number of inputs to NTSLepRb neurons. In addition, anterograde tracing results demonstrated that NTSLepRb neurons sent efferent projections to 15 nuclei, including the dorsomedial hypothalamic nucleus and arcuate hypothalamic nucleus, which are involved in regulation of energy metabolism and feeding behaviors. Quantitative statistical analysis revealed that the inputs of the whole brain to NTSLepRb neurons were significantly greater than the outputs. Our study comprehensively revealed neuronal connections of NTSLepRb neurons in the whole brain and provided a neuroanatomical basis for further research on physiological and pathological functions of NTSLepRb neurons.
Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice.

J Virol.

2018 Jan 17

Scott JM, Lebratti TJ, Richner JM, Jiang X, Fernandez E, Zhao H, Fremont DH, Diamond MS, Shin H.
PMID: 29343577 | DOI: 10.1128/JVI.00038-18

Zika virus (ZIKV), which can cause devastating disease in fetuses of infected pregnant women, can be transmitted by mosquito inoculation and sexual routes. Little is known about immune protection against sexually transmitted ZIKV. In this study, we show that previous infection through intravaginal or subcutaneous routes with a contemporary Brazilian strain of ZIKV can protect against subsequent intravaginal challenge with a homologous strain. Both routes of inoculation induced high titers of ZIKV-specific and neutralizing antibody in serum and the vaginal lumen. Virus-specific T cells were recruited to and retained in the female reproductive tract after intravaginal and subcutaneous ZIKV infection. Studies in mice with genetic or acquired deficiencies in B and/or T cells demonstrated that both lymphocyte populations redundantly protect against intravaginal challenge in ZIKV-immune animals. Passive transfer of ZIKV immune IgG or T cells significantly limited intravaginal infection of naïve mice, although antibody more effectively prevented dissemination throughout the reproductive tract. Collectively, our experiments begin to establish the immune correlates of protection against intravaginal ZIKV infection, which should inform vaccination strategies in non-pregnant and pregnant women.IMPORTANCE The recent ZIKV epidemic resulted in devastating outcomes in fetuses and may affect reproductive health. Unlike other flaviviruses, ZIKV can be spread by sexual contact as well as a mosquito vector. While previous studies have identified correlates of protection for mosquito-mediated infection, few have focused on immunity against sexual transmission. As exposure to ZIKV via mosquito bite has likely occurred to many living in endemic areas, our study addresses whether this route of infection can protect against subsequent sexual exposure. We demonstrate that subcutaneous ZIKV infection can protect against subsequent vaginal infection by generating both local antiviral T cell and antibody responses. Our research begins to define the immune correlates of protection for ZIKV infection in the vagina and provides a foundation for testing ZIKV vaccines against sexual transmission

Atovaquone inhibits arbovirus replication through the depletion of intracellular nucleotides

J Virol

2019 Mar 20

Cifuentes Kottkamp A, De Jesus E, Grande R, Brown JA, Jacobs AR, Lim JK and Stapleford KA
PMID: 30894466 | DOI: 10.1128/jvi.00389-19

Arthropod-borne viruses represent a significant public health threat worldwide yet there are few antiviral therapies or prophylaxis targeting these pathogens. In particular, the development of novel antivirals for high-risk populations such as pregnant women is essential to prevent devastating disease such as that which was experienced with the recent outbreak of Zika virus (ZIKV) in the Americas. One potential avenue to identify new and pregnancy-acceptable antiviral compounds is to repurpose well-known and widely used FDA approved drugs. In this study, we addressed the antiviral role of atovaquone, a FDA Pregnancy Category C drug and pyrimidine biosynthesis inhibitor used for the prevention and treatment of parasitic infections. We found that atovaquone was able to inhibit ZIKV and chikungunya virus virion production in human cells and that this antiviral effect occurred early during infection at the initial steps of viral RNA replication. Moreover, we were able to complement viral replication and virion production with the addition of exogenous pyrimidine nucleosides indicating that atovaquone is functioning through the inhibition of the pyrimidine biosynthesis pathway to inhibit viral replication. Finally, using an ex vivo human placental tissue model, we found that atovaquone could limit ZIKV infection in a dose-dependent manner providing evidence that atovaquone may function as an antiviral in humans. Taken together, these studies suggest that atovaquone could be a broad-spectrum antiviral drug and a potential attractive candidate for the prophylaxis or treatment of arbovirus infection in vulnerable populations, such as pregnant women and children.IMPORTANCE The ability to protect vulnerable populations such as pregnant women and children from Zika virus and other arbovirus infections is essential to preventing the devastating complications induced by these viruses. One class of antiviral therapies may lie in known pregnancy-acceptable drugs that have the potential to mitigate arbovirus infections and disease yet this has not been explored in detail. In this study, we show that the common antiparasitic drug, atovaquone, inhibits arbovirus replication through intracellular nucleotide depletion and can impair ZIKV infection in an ex vivo human placental explant model. Our study provides a novel function for atovaquone and highlights that the rediscovery of pregnancy-acceptable drugs with potential antiviral effects can be the key to better addressing the immediate need for treating viral infections and preventing potential birth complications and future disease.
Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells

EBioMedicine

2023 Feb 03

Zhou, J;Guan, MY;Li, RT;Qi, YN;Yang, G;Deng, YQ;Li, XF;Li, L;Yang, X;Liu, JF;Qin, CF;
PMID: 36739631 | DOI: 10.1016/j.ebiom.2023.104457

Zika virus (ZIKV) is an emerging arbovirus of the genus flavivirus that is associated with congenital Zika syndrome (CZS) in newborns. A wide range of clinical symptoms including intellectual disability, speech delay, coordination or movement problems, and hearing and vision loss, have been well documented in children with CZS. However, whether ZIKV can invade the olfactory system and lead to post-viral olfactory dysfunction (PVOD) remains unknown.We investigated the susceptibility and biological responses of the olfactory system to ZIKV infection using mouse models and human olfactory organoids derived from patient olfactory mucosa.We demonstrate that neonatal mice infected with ZIKV suffer from transient olfactory dysfunction when they reach to puberty. Moreover, ZIKV mainly targets olfactory ensheathing cells (OECs) and exhibits broad cellular tropism colocalizing with small populations of mature/immature olfactory sensory neurons (mOSNs/iOSNs), sustentacular cells and horizontal basal cells in the olfactory mucosa (OM) of immunodeficient AG6 mice. ZIKV infection induces strong antiviral immune responses in both the olfactory mucosa and olfactory bulb tissues, resulting in the upregulation of proinflammatory cytokines/chemokines and genes related to the antiviral response. Histopathology and transcriptomic analysis showed typical tissue damage in the olfactory system. Finally, by using an air-liquid culture system, we showed that ZIKV mainly targets sustentacular cells and OECs and support robust ZIKV replication.Our results demonstrate that olfactory system represents as significant target for ZIKV infection, and that PVOD may be neglected in CZS patients.Stated in the acknowledgment.
Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus

Science translational medicine

2022 Dec 07

Tang, YL;Liu, AL;Lv, SS;Zhou, ZR;Cao, H;Weng, SJ;Zhang, YQ;
PMID: 36475906 | DOI: 10.1126/scitranslmed.abq6474

Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

Emerg Infect Dis.

2016 Dec 15

Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y, Estetter LB, Suzuki T, Ritter J, Keating MK, Hale G, Gary J, Muehlenbachs A, Lambert A, Lanciotti R, Oduyebo T, Meaney-Delman D, Bolaños F, Saad EA, Shieh WJ, Zaki SR.
PMID: 27959260 | DOI: 10.3201/eid2303.161499

Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?