Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (123)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • (-) Remove Sst filter Sst (65)
  • TH (63) Apply TH filter
  • (-) Remove VGAT filter VGAT (58)
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (47) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (34) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (10) Apply RNAscope filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (109) Apply Neuroscience filter
  • Other (7) Apply Other filter
  • Pain (5) Apply Pain filter
  • diabetes (4) Apply diabetes filter
  • Behavior (2) Apply Behavior filter
  • CGT (2) Apply CGT filter
  • Development (2) Apply Development filter
  • Inflammation (2) Apply Inflammation filter
  • Stem cell (2) Apply Stem cell filter
  • Allergy (1) Apply Allergy filter
  • Anxiety (1) Apply Anxiety filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Chronic Itch (1) Apply Chronic Itch filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Developmental (1) Apply Developmental filter
  • Evolution (1) Apply Evolution filter
  • Extinction Memory (1) Apply Extinction Memory filter
  • Feeding (1) Apply Feeding filter
  • Immune Cells (1) Apply Immune Cells filter
  • lncRNA (1) Apply lncRNA filter
  • Locomotion (1) Apply Locomotion filter
  • Memory (1) Apply Memory filter
  • Metabolism (1) Apply Metabolism filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Obesity (1) Apply Obesity filter
  • Other: Anxiety (1) Apply Other: Anxiety filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Seizures (1) Apply Seizures filter
  • Sleep (1) Apply Sleep filter
  • Social Trauma (1) Apply Social Trauma filter
  • Stem Cells (1) Apply Stem Cells filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (123) Apply Publications filter
Prelimbic cortex is a common brain area activated during cue‐induced reinstatement of cocaine and heroin seeking in a polydrug self‐administration rat model

Eur J Neurosci. 2018 Oct 11.

2018 Oct 11

Rubio FJ, Quintana-Feliciano R, Warren BL, Li X, Witonsky KFR, Soto Del Valle F, Selvam PV, Caprioli D, Venniro M, Bossert JM, Shaham Y, Hope BT.
PMID: 30307667 | DOI: 10.1111/ejn.14203

Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg/infusion, 3-h/d, 18 d) or heroin (0.03 mg/kg/infusion) on alternating days (9 d for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex (mPFC), dorsal striatum (DS), nucleus accumbens (NAc), and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells were similar for the heroin and cocaine cue-activated neurons. Overall the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.
Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance

Hippocampus

2019 Mar 19

Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S and Gundlach AL
PMID: 30891856 | DOI: 10.1002/hipo.23089

Anxiety disorders are highly prevalent in modern society and better treatments are required. Key brain areas and signaling systems underlying anxiety include prefrontal cortex, hippocampus, and amygdala, and monoaminergic and peptidergic systems, respectively. Hindbrain GABAergic projection neurons that express the peptide, relaxin-3, broadly innervate the forebrain, particularly the septum and hippocampus, and relaxin-3 acts via a Gi/o -protein-coupled receptor known as the relaxin-family peptide 3 receptor (RXFP3). Thus, relaxin-3/RXFP3 signaling is implicated in modulation of arousal, motivation, mood, memory, and anxiety. Ventral hippocampus (vHip) is central to affective and cognitive processing and displays a high density of relaxin-3-positive nerve fibers and RXFP3 binding sites, but the identity of target neurons and associated effects on behavior are unknown. Therefore, in adult, male rats, we assessed the neurochemical nature of hippocampal RXFP3 mRNA-expressing neurons and anxiety-like and social behavior following chronic RXFP3 activation in vHip by viral vector expression of an RXFP3-selective agonist peptide, R3/I5. RXFP3 mRNA detected by fluorescent in situ hybridization was topographically distributed across the hippocampus in somatostatin- and parvalbumin-mRNA expressing GABA neurons. Chronic RXFP3 activation in vHip increased anxiety-like behavior in the light-dark box and elevated-plus maze, but not the large open-field test, and reduced social interaction with a conspecific stranger. Our data reveal disruptive effects of persistent RXFP3 signaling on hippocampal GABA networks important in anxiety; and identify a potential therapeutic target for anxiety disorders that warrants further investigation in relevant preclinical models.
Chronic stress induces coordinated cortical microcircuit cell-type transcriptomic changes consistent with altered information processing

Biological Psychiatry

2021 Oct 01

Newton, D;Oh, H;Shukla, R;Misquitta, K;Fee, C;Banasr, M;Sibille, E;
| DOI: 10.1016/j.biopsych.2021.10.015

Introduction Information processing in cortical cell microcircuits involves regulation of excitatory pyramidal (PYR) cells by inhibitory Somatostatin- (SST), Parvalbumin- (PV), and Vasoactive intestinal peptide- (VIP) expressing interneurons. Human post-mortem and rodent studies show impaired PYR-cell dendritic morphology and decreased SST-cell markers in MDD or after chronic stress. However, knowledge of coordinated changes across microcircuit cell-types is virtually absent. Methods We investigated the transcriptomic effects of unpredictable chronic mild stress (UCMS) on distinct microcircuit cell-types in the medial prefrontal cortex (Cingulate regions 24a/b and 32) in mice. C57Bl/6 mice, exposed to UCMS or control housing for five weeks, were assessed for anxiety- and depressive-like behaviors. Microcircuit cell-types were laser-microdissected and processed for RNA-sequencing. Results UCMS induced predicted elevations in behavioral emotionality in mice. DESeq2 analysis revealed unique differentially-expressed genes in each cell-type after UCMS. Pre-synaptic functions, oxidative stress response, metabolism, and translational regulation were differentially dysregulated across cell-types, whereas nearly all cell-types showed downregulated post-synaptic gene signatures. Across the cortical microcircuit, we observed a shift from a distributed transcriptomic coordination across cell-types in controls towards UCMS-induced increased coordination between PYR-, SST- and PV-cells, and hub-like role for PYR-cells. Lastly, we identified a microcircuit-wide coexpression network enriched in synaptic, bioenergetic, and oxidative stress response genes that correlated with UCMS-induced behaviors. Conclusions These findings suggest cell-specific deficits, microcircuit-wide synaptic reorganization, and a shift in cells regulating the cortical excitation-inhibition balance, suggesting increased coordinated regulation of PYR-cells by SST- and PV-cells.
Corticotropin releasing factor (CRF) co-expression in GABAergic, glutamatergic and GABA/glutamatergic subpopulations in the central extended amygdala and ventral pallidum of young male primates

The Journal of neuroscience : the official journal of the Society for Neuroscience

2022 Oct 24

Fudge, JL;Kelly, EA;Hackett, TA;
PMID: 36280261 | DOI: 10.1523/JNEUROSCI.1453-22.2022

The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates including human. Corticotropin releasing factor (CRF), a canonical 'stress molecule' associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse. CRF's effects on circuits critically depend on its colocation with primary 'fast' transmitters, making this crucial for understanding circuit effects. We surveyed the distribution and colocalization of CRF-, VGluT2- (vesicular glutamate transporter 2) and VGAT- (vesicular GABA transporter) mRNA in specific subregions of the CEA and VP in young male monkeys. Although CRF-containing neurons were clustered in the lateral central bed nucleus (BSTLcn), the majority were broadly dispersed throughout other CEA subregions, and the VP. CRF/VGAT-only neurons were highest in the BSTLcn, lateral central amygdala nucleus (CeLcn), and medial central amygdala nucleus (CeM) (74%, 73%, and 85%, respectively). In contrast, lower percentages of CRF/VGAT only neurons populated the sublenticular extended amygdala (SLEAc), ventrolateral bed nucleus (BSTLP), and VP (53%, 54%, 17%, respectively), which had higher complements of CRF/VGAT/VGluT2 labeled neurons (33%, 29%, 67%, respectively). Thus, the majority of CRF-neurons at the 'poles' (BSTLcn and CeLcn/CeM) of the CEA are inhibitory, while the 'extended' BSTLP and SLEAc subregions, and neighboring VP, have a more complex profile with admixtures of 'multiplexed' excitatory CRF neurons. CRF's colocalization with its various fast transmitters is likely circuit-specific, and relevant for understanding CRF actions on specific target sites.SIGNIFICANCE STATEMENT:The central extended amygdala (CEA) and ventral pallidum (VP) regulate multiple motivated behaviors through differential downstream projections. The stress neuropeptide corticotropin releasing factor (CRF) is enriched in the CEA, and is thought to 'set the gain' through modulatory effects on co-expressed primary transmitters. Using protein and transcript assays in monkey, we found that CRF neurons are broadly and diffusely distributed in CEA and VP. CRF mRNA+ neurons colocalize with VGAT (GABA) and VGluT2 (glutamate) mRNAs in different proportions depending on subregion. CRF mRNA was also co-expressed in a subpopulation of VGAT/VGluT2 mRNA ('multiplexed') cells which were most prominent in the VP and 'pallidal'-like parts of the CEA. Heterogeneous CRF and fast transmitter co-expression across CEA/VP subregions implies circuit-specific effects.
Transcriptional Profiling of Somatostatin Interneurons in the Spinal Dorsal Horn.

Sci Rep.

2018 May 01

Chamessian A, Young M, Qadri Y, Berta T, Ji RR, Van de Ven T.
PMID: 29717160 | DOI: 10.1038/s41598-018-25110-7

The spinal dorsal horn (SDH) is comprised of distinct neuronal populations that process different somatosensory modalities. Somatostatin (SST)-expressing interneurons in the SDH have been implicated specifically in mediating mechanical pain. Identifying the transcriptomic profile of SST neurons could elucidate the unique genetic features of this population and enable selective analgesic targeting. To that end, we combined the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) method and Fluorescence Activated Nuclei Sorting (FANS) to capture tagged SST nuclei in the SDH of adult male mice. Using RNA-sequencing (RNA-seq), we uncovered more than 13,000 genes. Differential gene expression analysis revealed more than 900 genes with at least 2-fold enrichment. In addition to many known dorsal horn genes, we identified and validated several novel transcripts from pharmacologically tractable functional classes: Carbonic Anhydrase 12 (Car12), Phosphodiesterase 11 A (Pde11a), and Protease-Activated Receptor 3 (F2rl2). In situ hybridization of these novel genes showed differential expression patterns in the SDH, demonstrating the presence of transcriptionally distinct subpopulations within the SST population. Overall, our findings provide new insights into the gene repertoire of SST dorsal horn neurons and reveal several novel targets for pharmacological modulation of this pain-mediating population and treatment of pathological pain.

Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons

Molecular Metabolism

2018 May 08

Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM.
PMID: - | DOI: 10.1016/j.molmet.2018.05.001

Abstract

Objectives

Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons.

Methods

MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference.

Results

We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance.

Conclusions

Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.

NPFF Decreases Activity of Human Arcuate NPY Neurons: A Study in Embryonic-Stem-Cell-Derived Model

International journal of molecular sciences

2022 Mar 17

Torz, L;Niss, K;Lundh, S;Rekling, JC;Quintana, CD;Frazier, SED;Mercer, AJ;Cornea, A;Bertelsen, CV;Gerstenberg, MK;Hansen, AMK;Guldbrandt, M;Lykkesfeldt, J;John, LM;Villaescusa, JC;Petersen, N;
PMID: 35328681 | DOI: 10.3390/ijms23063260

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.
Identification of a Brainstem Circuit Controlling Feeding

Cell.

2017 Jul 27

Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM.
PMID: 28753423 | DOI: 10.1016/j.cell.2017.06.045

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.

Hippocampal oxytocin receptors are necessary for discrimination of social stimuli

Nat Commun.

2017 Dec 08

Raam T, McAvoy KM, Besnard A, Veenema A, Sahay A.
PMID: 29222469 | DOI: 10.1038/s41467-017-02173-0

Oxytocin receptor (Oxtr) signaling in neural circuits mediating discrimination of social stimuli and affiliation or avoidance behavior is thought to guide social recognition. Remarkably, the physiological functions of Oxtrs in the hippocampus are not known. Here we demonstrate using genetic and pharmacological approaches that Oxtrs in the anterior dentate gyrus (aDG) and anterior CA2/CA3 (aCA2/CA3) of mice are necessary for discrimination of social, but not non-social, stimuli. Further, Oxtrs in aCA2/CA3 neurons recruit a population-based coding mechanism to mediate social stimuli discrimination. Optogenetic terminal-specific attenuation revealed a critical role for aCA2/CA3 outputs to posterior CA1 for discrimination of social stimuli. In contrast, aCA2/CA3 projections to aCA1 mediate discrimination of non-social stimuli. These studies identify a role for an aDG-CA2/CA3 axis of Oxtr expressing cells in discrimination of social stimuli and delineate a pathway relaying social memory computations in the anterior hippocampus to the posterior hippocampus to guide social recognition.

Social trauma engages lateral septum circuitry to occlude social reward

Nature

2022 Nov 30

Li, L;Durand-de Cuttoli, R;Aubry, AV;Burnett, CJ;Cathomas, F;Parise, LF;Chan, KL;Morel, C;Yuan, C;Shimo, Y;Lin, HY;Wang, J;Russo, SJ;
PMID: 36450985 | DOI: 10.1038/s41586-022-05484-5

In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance

Nature communications

2022 Dec 03

Yan, JJ;Ding, XJ;He, T;Chen, AX;Zhang, W;Yu, ZX;Cheng, XY;Wei, CY;Hu, QD;Liu, XY;Zhang, YL;He, M;Xie, ZY;Zha, X;Xu, C;Cao, P;Li, H;Xu, XH;
PMID: 36463200 | DOI: 10.1038/s41467-022-35211-7

Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
"Guanylin and uroguanylin mRNA expression is increased following Roux-en-Y gastric bypass, but guanylins do not play a significant role in body weight regulation and glycemic control. "

Peptides.

2017 Dec 28

Fernandez-Cachon ML, Pedersen SL, Rigbolt KT, Zhang C, Fabricius K, Hansen HH, Elster L, Fink LN, Schäfer M, Rhee NA, Langholz E, Wandall E, Friis SU, Vilmann P, Kristiansen VB, Schmidt C, Schreiter K, Breitschopf K, Hübschle T, Jorsal T, Vilsbøll T, Schm
PMID: 29289697 | DOI: 10.1016/j.peptides.2017.12.024

Abstract

AIM:

To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB.

METHODS:

Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas.

RESULTS:

GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice.

CONCLUSION:

GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?