Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H
PMID: 31999649 | DOI: 10.1172/jci.insight.133977
Free full text
In recent years, chimeric antigen receptor-modified T cell (CAR T cell) therapy has proven to be a promising approach against cancer. Nonetheless, this approach still faces multiple challenges in eliminating solid tumors, one of which being the immunosuppressive tumor microenvironment (TME). Here, we demonstrated that knocking out the endogenous TGF-? receptor II (TGFBR2) in CAR T cells with CRISPR/Cas9 technology could reduce the induced Treg conversion and prevent the exhaustion of CAR T ce lls. Meanwhile, TGFBR2-edited CAR T cells had better in vivo tumor elimination efficacy, both in cell line-derived xenograft and patient-derived xenograft solid tumor models, whether administered locally or systemically. In addition, the TGFBR2-edited CAR T cells could eliminate contralaterally reinoculated xenografts in mice effectively, with an increased proportion of memory subsets within circulating CAR T cells of central memory and effector memory subsets. In conclusion, we greatly improved the in vitro and in vivo function of CAR T cells in TGF-?-rich tumor environments by knocking out endogenous TGFBR2 and propose a potentially new method to improve the efficacy of CAR T cell therapy for treating solid tumors
Cancer immunology research
Reschke, R;Shapiro, JW;Yu, J;Rouhani, SJ;Olson, DJ;Zha, Y;Gajewski, TF;
PMID: 35977003 | DOI: 10.1158/2326-6066.CIR-22-0362
Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.
Strasser K, Birnleitner H, Beer A, Pils D, Gerner MC, Schmetterer KG, Bachleitner-Hofmann T, Stift A, Bergmann M, Oehler R.
PMID: - | DOI: 10.1080/2162402X.2018.1537693
T cells in colorectal cancer (CRC) are associated with improved survival. However, checkpoint immunotherapies antagonizing the suppression of these cells are ineffective in the great majority of patients. To better understand the immune cell regulation in CRC, we compared tumor-associated T lymphocytes and macrophages to the immune cell infiltrate of normal mucosa. Human colorectal tumor specimen and tumor-distant normal mucosa tissues of the same patients were collected. Phenotypes and functionality of tissue-derived T cells and macrophages were characterized using immunohistochemistry, RNA in situ hybridization, and multiparameter flow cytometry. CRC contained significantly higher numbers of potentially immunosuppressive CD39 and Helios-expressing regulatory T cells in comparison to normal mucosa. Surprisingly, we found a concomitant increase of pro-inflammatory IFNγ -producing T cells. PD-L1+ stromal cells were decreased in the tumor tissue. Macrophages in the tumor compared to tumor-distant normal tissue appear to have an altered phenotype, identified by HLA-DR, CD14, CX3CR1, and CD64, and tolerogenic CD206+macrophages are quantitatively reduced. The prognostic effect of these observed differences between distant mucosa and tumor tissue on the overall survival was examined using gene expression data of 298 CRC patients. The combined gene expression of increased FOXP3, IFNγ, CD14, and decreased CD206 correlated with a poor prognosis in CRC patients. These data reveal that the CRC microenvironment promotes the coexistence of seemingly antagonistic suppressive and pro-inflammatory immune responses and might provide an explanation why a blockade of the PD1/PD-L1 axis is ineffective in CRC. This should be taken into account when designing novel treatment strategies.
Boxberg M, Leising L, Steiger K, Jesinghaus M, Alkhamas A, Mielke M, Pfarr N, Götz C, Wolff KD, Weichert W, Kolk A.
PMID: 30530592 | DOI: 10.4049/jimmunol.1800242
Immunotherapy shows promising results and revolutionizes treatment of oral squamous cell carcinoma (OSCC). The immunologic microenvironment might have prognostic/predictive implications. Morphologic immunologic parameters (inflammatory infiltrate, stromal content, and budding activity [BA] [potentially indicating epithelial–mesenchymal transition]) were evaluated in 66 human primary therapy-naive OSCCs. Intraepithelial/stromal tumor-infiltrating lymphocytes (TILs; CD3+/CD4+/CD8+/CD4+FOXP3+/IL-17A+) were quantified, and ratios were calculated. HLA class I in tumor cells was evaluated immunohistochemically. mRNA in situ hybridization to detect IFN-γ was performed. Analysis was performed within invasive front (IF) and tumor center (TCe). Decreased HLA expression was associated with low TIL density, pronounced stromal content, and high BA; IFN-γ in TILs was correlated with high-density TILs; and IFN-γ in tumor cells was correlated with absence of BA (p < 0.05). Heterogeneity of parameters (TCe/IF) was rare. Low density of stromal CD4+FOXP3+ TILs within TCe and IF was identified as an independent prognostic factor for poor overall, disease-specific, and disease-free survival (p ≤ 0.011). Refining prognostication in OSCC with high-density CD4+FOXP3+ infiltrate within TCe and/or IF, high FOXP3:CD4 ratio was significantly correlated with favorable outcome in this subgroup. Furthermore, high-stromal CD8:CD4 ratio was found to be an independent favorable prognostic factor. In summary, immunologic parameters were closely intertwined. Morphologic correlates of epithelial–mesenchymal transition were associated with downregulation of HLA and decreased inflammation. Heterogeneity was infrequent. Low-density stromal CD4+FOXP3+ infiltrate within TCe and IF was an independent poor prognostic factor. Stratification of cases with high-density CD4+FOXP3+ TILs by FOXP3:CD4 ratio enables refinement of prognostication of this subgroup. CD8:CD4 ratio was identified as an independent prognostic factor.
Sasaki, K;Hayamizu, Y;Murakami, R;Toi, M;Iwai, K;
PMID: 37060248 | DOI: 10.1002/1873-3468.14623
Tumor-elicited inflammation confers tumorigenic properties, including cell death resistance, proliferation, or immune evasion. To focus on inflammatory signaling in tumors, we investigated linear ubiquitination, which enhances the nuclear factor-κB signaling pathway and prevents extrinsic programmed cell death under inflammatory environments. Here, we showed that linear ubiquitination was augmented especially in tumor cells around a necrotic core. Linear ubiquitination allowed melanomas to tolerate the hostile tumor microenvironment and to extend a necrosis-containing morphology. Loss of linear ubiquitination resulted in few necrotic lesions and growth regression, further leading to repression of innate anti-PD-1 therapy resistance signatures in melanoma as well as activation of interferon responses and antigen presentation that promote immune-mediated tumor eradication. Collectively, linear ubiquitination promotes tumor-specific tissue remodeling and the ensuing immune evasion.
Abstract LB235: Characterizing tumor-infiltrated immune cells with spatial context using an integrated RNAscope-immunohistochemistry co-detection workflow in FFPE tissues
Dikshit, A;Phatak, J;Hernandez, L;Doolittle, E;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb235
Complex tissues such as tumors are comprised of multiple cells types and extracellular matrix. These cells include heterogenous populations of immune cells that infiltrate the tumors. Understanding the composition of these immune infiltrates in the tumor microenvironment (TME) can provide key insights to guide therapeutic intervention and predict treatment response. Thorough understanding of complex tissue dynamics and immune cell characterization requires a multi-omics approach. Simultaneous detection of RNA and protein using in situ hybridization (ISH) and immunohistochemistry/immunofluorescence (IHC/IF) can reveal cellular sources of secreted proteins, identify specific cell types, and visualize the spatial organization of cells within the tissue. However, a sequential workflow of ISH followed by IHC/IF frequently yields suboptimal protein detection because the protease digestion step in the ISH protocol resulting in poor antibody signal. Here we demonstrate a newly developed integrated ISH/IHC workflow that can substantially improve RNA-protein co-detection, enabling the visualization and characterization of tumor immune infiltrates at single-cell resolution with spatial and morphological context. To characterize tumor-infiltrating immune cells in a tumor TMA (tumor microarray), we utilized the RNAscope Multiplex Fluorescence assay in combination with the RNA-Protein Co-detection Kit to detect multiple immune cell populations. Immune cells such as macrophages, T cells and NK cells were detected using specific antibodies against CD68, CD8, CD4 and CD56, respectively. Precise characterization of these immune cells was achieved by using probes against targets such as CCL5, IFNG, GNZB, IL-12, NCR1 etc. that not only help in identifying specific immune cells but also assist in determining their activation states. We identified subsets of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T lymphocytes. Additionally, we were able to determine the activation states of CD8+ T cells by visualizing the expression of IFNG and GZMB. Furthermore, infiltrating macrophages were identified by detecting the CD68 protein expression while the M1 and M2 subsets were differentiated by detecting the M2-specific target RNA for CD163. Similarly, NK cells were identified by detecting CD56 protein in combination with CCL5 and NCR1 RNA expression. Interestingly, the degree of infiltration of the different immune cell populations varied based on the tumor type. In conclusion, the new RNAscope-ISH-IHC co-detection workflow and reagents enable optimized simultaneous visualization of RNA and protein targets by enhancing the compatibility of antibodies - including many previously incompatible antibodies - with RNAscope. This new workflow provides a powerful new approach to identifying and characterizing tumor infiltrating populations of immune cells.
Akkermans, O;Delloye-Bourgeois, C;Peregrina, C;Carrasquero-Ordaz, M;Kokolaki, M;Berbeira-Santana, M;Chavent, M;Reynaud, F;Raj, R;Agirre, J;Aksu, M;White, ES;Lowe, E;Ben Amar, D;Zaballa, S;Huo, J;Pakos, I;McCubbin, PTN;Comoletti, D;Owens, RJ;Robinson, CV;Castellani, V;Del Toro, D;Seiradake, E;
PMID: 36240740 | DOI: 10.1016/j.cell.2022.09.025
Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.
Giardino Torchia, ML;Letizia, M;Gilbreth, R;Merlino, A;Sult, E;Monks, N;Chesebrough, J;Tammali, R;Chu, N;Tong, J;Meekin, J;Schifferli, K;Vashisht, K;DaCosta, K;Clarke, L;Gesse, C;Yao, XT;Bridges, C;Moody, G;
PMID: 35570170 | DOI: 10.1016/j.jcyt.2022.03.008
Chimeric antigen receptor (CAR) T cell therapy has yielded impressive clinical results in hematological malignancies and is a promising approach for solid tumor treatment. However, toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, is a concern hampering its broader use.In selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CARs bearing a low- and high-affinity single-chain variable fragment (scFv) binding to a similar epitope and cross-reactive with murine GPC3.Where the high-affinity CAR-T cells were toxic in vivo, the low-affinity CAR maintained cytotoxic function against antigen-positive tumor cells but did not show toxicity against normal tissues. High-affinity CAR-induced toxicity was caused by on-target, off-tumor binding, based on the observation that higher doses of the high-affinity CAR-T caused toxicity in non-tumor-bearing mice and accumulated in organs with low expression of GPC3. To explore another layer of controlling CAR-T toxicity, we developed a means to target and eliminate CAR-T cells using anti-TNF-α antibody therapy after CAR-T infusion. The antibody was shown to function by eliminating early antigen-activated, but not all, CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from antitumor efficacy with only a minor loss in tumor control. By exploring additional traits of the CAR-T cells after activation, we identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that eliminated early activated CAR-T following antigen engagement in vivo.By combining the reduced-affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.
Host IL11 Signaling Suppresses CD4+ T cell-Mediated Antitumor Responses to Colon Cancer in Mice
Cancer immunology research
Huynh, J;Baloyan, D;Chisanga, D;Shi, W;O'Brien, M;Afshar-Sterle, S;Alorro, M;Pang, L;Williams, DS;Parslow, AC;Thilakasiri, P;Eissmann, MF;Boon, L;Masson, F;Chand, AL;Ernst, M;
PMID: 33906864 | DOI: 10.1158/2326-6066.CIR-19-1023
IL11 is a member of the IL6 family of cytokines and signals through its cognate receptor subunits, IL11RA and glycoprotein 130 (GP130), to elicit biological responses via the JAK/STAT signaling pathway. IL11 contributes to cancer progression by promoting the survival and proliferation of cancer cells, but the potential immunomodulatory properties of IL11 signaling during tumor development have thus far remained unexplored. Here, we have characterized a role for IL11 in regulating CD4+ T cell-mediated antitumor responses. Absence of IL11 signaling impaired tumor growth in a sporadic mouse model of colon cancer and syngeneic allograft models of colon cancer. Adoptive bone marrow transfer experiments and in vivo depletion studies demonstrated that the tumor-promoting activity of IL11 was mediated through its suppressive effect on host CD4+ T cells in the tumor microenvironment. Indeed, when compared with Il11ra-proficient CD4+ T cells associated with MC38 tumors, their Il11ra-deficient counterparts displayed elevated expression of mRNA encoding the antitumor mediators IFNγ and TNFα. Likewise, IL11 potently suppressed the production of proinflammatory cytokines (IFNγ, TNFα, IL6, and IL12p70) by CD4+ T cells in vitro, which we corroborated by RNAscope analysis of human colorectal cancers, where IL11RAhigh tumors showed less IFNG and CD4 expression than IL11RAlow tumors. Therefore, our results ascribe a tumor cell-extrinsic immunomodulatory role to IL11 during colon cancer development that could be amenable to an anticytokine-based therapy.See related commentary by van der Burg.
Subbiah V, Murthy R, Hong DS, Prins RM, Hosing C, Hendricks K, Kolli D, Noffsinger L, Brown R, McGuire M, Fu S, Piha-Paul S, Naing A, Conley AP, Benjamin RS, Kaur I, Bosch ML.
PMID: 30018119 | DOI: 10.1158/1078-0432.CCR-17-2707
Abstract
Purpose: Dendritic cells (DC) initiate adaptive immune responses through the uptake and presentation of antigenic material. In preclinical studies, intratumorally injected activated DCs (aDCs; DCVax-Direct) were superior to immature DCs in rejecting tumors from mice.Experimental Design: This single-arm, open-label phase I clinical trial evaluated the safety and efficacy of aDCs, administered intratumorally, in patients with solid tumors. Three dose levels (2 million, 6 million, and 15 million aDCs per injection) were tested using a standard 3 + 3 dose-escalation trial design. Feasibility, immunogenicity, changes to the tumor microenvironment after direct injection, and survival were evaluated. We also investigated cytokine production of aDCs prior to injection.Results: In total, 39 of the 40 enrolled patients were evaluable. The injections of aDCs were well tolerated with no dose-limiting toxicities. Increased lymphocyte infiltration was observed in 54% of assessed patients. Stable disease (SD; best response) at week 8 was associated with increased overall survival. Increased secretion of interleukin (IL)-8 and IL12p40 by aDCs was significantly associated with survival (P = 0.023 and 0.024, respectively). Increased TNFα levels correlated positively with SD at week 8 (P < 0.01).Conclusions: Intratumoral aDC injections were feasible and safe. Increased production of specific cytokines was correlated with SD and prolonged survival, demonstrating a link between the functional profile of aDCs prior to injection and patient outcomes.
Zhang, X;Zhang, C;Qiao, M;Cheng, C;Tang, N;Lu, S;Sun, W;Xu, B;Cao, Y;Wei, X;Wang, Y;Han, W;Wang, H;
PMID: 36240777 | DOI: 10.1016/j.ccell.2022.09.013
Chimeric antigen receptor (CAR) T cell therapy has limited efficacy against solid tumors, and one major challenge is T cell exhaustion. To address this challenge, we performed a candidate gene screen using a hypofunction CAR-T cell model and found that depletion of basic leucine zipper ATF-like transcription factor (BATF) improved the antitumor performance of CAR-T cells. In different types of CAR-T cells and mouse OT-1 cells, loss of BATF endows T cells with improved resistance to exhaustion and superior tumor eradication efficacy. Mechanistically, we found that BATF binds to and up-regulates a subset of exhaustion-related genes in human CAR-T cells. BATF regulates the expression of genes involved in development of effector and memory T cells, and knocking out BATF shifts the population toward a more central memory subset. We demonstrate that BATF is a key factor limiting CAR-T cell function and that its depletion enhances the antitumor activity of CAR-T cells against solid tumors.
Bakheet AMH, Zhao C, Chen JN, Zhang JY, Huang JT, Du Y, Gong LP, Bi YH, Shao CK
PMID: 31832976 | DOI: 10.1007/s12072-019-10006-z
BACKGROUND:
The diagnostic and prognostic values of glypican3 (GPC3) and glutamine synthetase (GS) proteins in hepatocellular carcinoma (HCC) have been reported, but their specificity and sensitivity remain low. Here, we applied RNAscope to improve HCC early pathological and differential diagnosis by estimating GPC3 and GS mRNAs.
METHODS:
We performed RNAscope and immunohistochemistry (IHC) to detect GPC3 and GS biomarkers on the tissue sections of 194 cases, including high- and low-grade liver dysplastic nodules; highly, moderately, and poorly differentiated HCCs; intrahepatic cholangiocarcinomas (ICCs); metastatic HCC; and carcinomas from other organs.
RESULTS:
The results showed that all the cases that were negative for GPC3 by RNAscope were also negative for this protein by IHC. The use of RNAscope assay improved the GPC3 and GS specificity and sensitivity by 20-30%. Hence, HCC shows early recognition and upgrades the metastatic HCC differentiation by 23% compared with IHC (p?=?0.0001, 0.0064). Meanwhile, all liver cirrhosis, cholangiocytes and non-HCC samples were negative for GPC3 and GS except lymphocytes in lymphomas, and 2 (8.3%) out of the 24 ICC samples but not in the cancer cells.
CONCLUSION:
RNAscope for GPC3 and GS panel was highly specific and sensitive for the pathological identification of dysplastic nodules, early stages of HCCs, and would differentiate them from HCCs and metastatic tumors compared with IHC.