Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG Jr, Olson DP.
PMID: 30541071 | DOI: 10.1210/en.2018-00747
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF
PMID: 32170060 | DOI: 10.1038/s41467-020-15230-y
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission
Ito, N;Takatsu, A;Ito, H;Koike, Y;Yoshioka, K;Kamei, Y;Imai, SI;
PMID: 35905718 | DOI: 10.1016/j.celrep.2022.111131
Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.
Akkermans, O;Delloye-Bourgeois, C;Peregrina, C;Carrasquero-Ordaz, M;Kokolaki, M;Berbeira-Santana, M;Chavent, M;Reynaud, F;Raj, R;Agirre, J;Aksu, M;White, ES;Lowe, E;Ben Amar, D;Zaballa, S;Huo, J;Pakos, I;McCubbin, PTN;Comoletti, D;Owens, RJ;Robinson, CV;Castellani, V;Del Toro, D;Seiradake, E;
PMID: 36240740 | DOI: 10.1016/j.cell.2022.09.025
Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.
Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027
Sleep disturbances are strongly associated with cardiovascular diseases. Baroreflex, a basic cardiovascular regulation mechanism, is modulated by sleep-wake states. Here, we show that neurons at key stages of baroreflex pathways also promote sleep. Using activity-dependent genetic labeling, we tagged neurons in the nucleus of the solitary tract (NST) activated by blood pressure elevation and confirmed their barosensitivity with optrode recording and calcium imaging. Chemogenetic or optogenetic activation of these neurons promoted non-REM sleep in addition to decreasing blood pressure and heart rate. GABAergic neurons in the caudal ventrolateral medulla (CVLM)-a downstream target of the NST for vasomotor baroreflex-also promote non-REM sleep, partly by inhibiting the sympathoexcitatory and wake-promoting adrenergic neurons in the rostral ventrolateral medulla (RVLM). Cholinergic neurons in the nucleus ambiguous-a target of the NST for cardiac baroreflex-promoted non-REM sleep as well. Thus, key components of the cardiovascular baroreflex circuit are also integral to sleep-wake brain-state regulation.
Shin, S;You, IJ;Jeong, M;Bae, Y;Wang, XY;Cawley, ML;Han, A;Lim, BK;
PMID: 36510113 | DOI: 10.1038/s41593-022-01208-0
Early-life trauma (ELT) is a risk factor for binge eating and obesity later in life, yet the neural circuits that underlie this association have not been addressed. Here, we show in mice that downregulation of the leptin receptor (Lepr) in the lateral hypothalamus (LH) and its effect on neural activity is crucial in causing ELT-induced binge-like eating and obesity upon high-fat diet exposure. We also found that the increased activity of Lepr-expressing LH (LHLepr) neurons encodes sustained binge-like eating in ELT mice. Inhibition of LHLepr neurons projecting to the ventrolateral periaqueductal gray normalizes these behavioral features of ELT mice. Furthermore, activation of proenkephalin-expressing ventrolateral periaqueductal gray neurons, which receive inhibitory inputs from LHLepr neurons, rescues ELT-induced maladaptive eating habits. Our results identify a circuit pathway that mediates ELT-induced maladaptive eating and may lead to the identification of novel therapeutic targets for binge eating and obesity.
Journal of chemical neuroanatomy
Viden, A;Ch'ng, SS;Walker, LC;Shesham, A;Hamilton, SM;Smith, CM;Lawrence, AJ;
PMID: 36182026 | DOI: 10.1016/j.jchemneu.2022.102167
The central nucleus of the amygdala (CeA) is a key hub integrating sensory inputs and modulating behavioural outputs. The CeA is a complex structure with discrete subdivisions, high peptidergic heterogeneity and broad CNS afferent and efferent projections. While several neuropeptide systems within the CeA have been examined in detail, less is known about CeA preproenkephalin (ppENK) cells. Here, we used a recently developed transgenic Penk-Cre mouse line to advance our understanding of the efferent and afferent connectivity of ppENK in the CeA. First, to determine the fidelity of Cre expression in Penk-Cre transgenic mice, we conducted RNAscope in the CeA of Penk-Cre mice. Our analysis revealed that 96.6% of CeA Cre+ neurons co-expressed pENK mRNA, and 99.7% of CeA pENK+ neurons co-expressed Cre mRNA, indicating faithful recapitulation of Cre expression in CeA ppENK-expressing cells, supporting the fidelity of the Penk-Cre reporter mouse. Anterograde tracing of CeAPenk cells showed strong efferent projections to the extended amygdala, midbrain and hindbrain PBN and NTS. Retrograde tracing of Penk afferents to the CeA were more restricted, with primary innervation originating within the amygdala complex and bed nucleus of the stria terminalis, and minor innervation from the parabrachial nucleus and nucleus of the solitary tract. Together, our data provide a comprehensive map of ENKergic efferent and afferent connectivity of the CeA in Penk-Cre mice. Further, we highlight both the utility and limitations of the Penk-Cre mice to study the function of CeA, PBN and NTS ppENK cells.
Giardino Torchia, ML;Letizia, M;Gilbreth, R;Merlino, A;Sult, E;Monks, N;Chesebrough, J;Tammali, R;Chu, N;Tong, J;Meekin, J;Schifferli, K;Vashisht, K;DaCosta, K;Clarke, L;Gesse, C;Yao, XT;Bridges, C;Moody, G;
PMID: 35570170 | DOI: 10.1016/j.jcyt.2022.03.008
Chimeric antigen receptor (CAR) T cell therapy has yielded impressive clinical results in hematological malignancies and is a promising approach for solid tumor treatment. However, toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, is a concern hampering its broader use.In selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CARs bearing a low- and high-affinity single-chain variable fragment (scFv) binding to a similar epitope and cross-reactive with murine GPC3.Where the high-affinity CAR-T cells were toxic in vivo, the low-affinity CAR maintained cytotoxic function against antigen-positive tumor cells but did not show toxicity against normal tissues. High-affinity CAR-induced toxicity was caused by on-target, off-tumor binding, based on the observation that higher doses of the high-affinity CAR-T caused toxicity in non-tumor-bearing mice and accumulated in organs with low expression of GPC3. To explore another layer of controlling CAR-T toxicity, we developed a means to target and eliminate CAR-T cells using anti-TNF-α antibody therapy after CAR-T infusion. The antibody was shown to function by eliminating early antigen-activated, but not all, CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from antitumor efficacy with only a minor loss in tumor control. By exploring additional traits of the CAR-T cells after activation, we identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that eliminated early activated CAR-T following antigen engagement in vivo.By combining the reduced-affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.
Zimmerman AL, Kovatsis EM, Poszgai RY, Tasnim A, Zhang Q, Ginty DD.
PMID: 30826183 | DOI: 10.1016/j.neuron.2019.02.002
Presynaptic inhibition (PSI) of primary sensory neurons is implicated in controlling gain and acuity in sensory systems. Here, we define circuit mechanisms and functions of PSI of cutaneous somatosensory neuron inputs to the spinal cord. We observed that PSI can be evoked by different sensory neuron populations and mediated through at least two distinct dorsal horn circuit mechanisms. Low-threshold cutaneousafferents evoke a GABAA-receptor-dependent form of PSI that inhibits similar afferent subtypes, whereas small-diameter afferentspredominantly evoke an NMDA-receptor-dependent form of PSI that inhibits large-diameter fibers. Behaviorally, loss of either GABAAreceptors (GABAARs) or NMDA receptors (NMDARs) in primary afferents leads to tactile hypersensitivity across skin types, and loss of GABAARs, but not NMDARs, leads to impaired texture discrimination. Post-weaning age loss of either GABAARs or NMDARs in somatosensory neurons causes systemic behavioral abnormalities, revealing critical roles of two distinct modes of PSI of somatosensory afferents in adolescence and throughout adulthood.
Frezel, N;Ranucci, M;Foster, E;Wende, H;Pelczar, P;Mendes, R;Ganley, RP;Werynska, K;d'Aquin, S;Beccarini, C;Birchmeier, C;Zeilhofer, HU;Wildner, H;
PMID: 36947543 | DOI: 10.1016/j.celrep.2023.112295
Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.
Lovatt, D;Tamburino, A;Krasowska-Zoladek, A;Sanoja, R;Li, L;Peterson, V;Wang, X;Uslaner, J;
PMID: 36261573 | DOI: 10.1038/s42003-022-03970-0
Patients with peripheral nerve injury, viral infection or metabolic disorder often suffer neuropathic pain due to inadequate pharmacological options for relief. Developing novel therapies has been challenged by incomplete mechanistic understanding of the cellular microenvironment in sensory nerve that trigger the emergence and persistence of pain. In this study, we report a high resolution transcriptomics map of the cellular heterogeneity of naïve and injured rat sensory nerve covering more than 110,000 individual cells. Annotation reveals distinguishing molecular features of multiple major cell types totaling 45 different subtypes in naïve nerve and an additional 23 subtypes emerging after injury. Ligand-receptor analysis revealed a myriad of potential targets for pharmacological intervention. This work forms a comprehensive resource and unprecedented window into the cellular milieu underlying neuropathic pain and demonstrates that nerve injury is a dynamic process orchestrated by multiple cell types in both the endoneurial and epineurial nerve compartments.
Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, Atwater E, Croney D, Zeidel ML, Osten P, Sabatini BL.
PMID: 27662084 | DOI: 10.1016/j.cell.2016.08.073
Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.