Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (15)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (3) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Cancer (6) Apply Cancer filter
  • Development (3) Apply Development filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Inflammation (2) Apply Inflammation filter
  • Stem Cells (2) Apply Stem Cells filter
  • Bone (1) Apply Bone filter
  • diabetes (1) Apply diabetes filter
  • Juvenile Polyposis Syndrome (1) Apply Juvenile Polyposis Syndrome filter
  • Lung (1) Apply Lung filter
  • Other: Bone (1) Apply Other: Bone filter
  • Other: Lung (1) Apply Other: Lung filter
  • Reproductive Biology (1) Apply Reproductive Biology filter

Category

  • Publications (15) Apply Publications filter
Loss of bone morphogenetic protein signaling in fibroblasts results in CXCL12-driven serrated polyp development

Journal of gastroenterology

2022 Nov 03

Ouahoud, S;Westendorp, BF;Voorneveld, PW;Abudukelimu, S;Koelink, PJ;Pascual Garcia, E;Buuren, JFI;Harryvan, TJ;Lenos, KJ;van Wezel, T;Offerhaus, JA;Fariña-Sarasqueta, A;Crobach, S;Slingerland, M;Hardwick, JCH;Hawinkels, LJAC;
PMID: 36326956 | DOI: 10.1007/s00535-022-01928-x

Mutations in Bone Morphogenetic Protein (BMP) Receptor (BMPR)1A and SMAD4 are detected in 50% of juvenile polyposis syndrome (JPS) patients, who develop stroma-rich hamartomatous polyps. The established role of stromal cells in regulating BMP activity in the intestine implies a role for stromal cells in polyp development. We used conditional Cre-LoxP mice to investigate how specific loss of BMPR1A in endothelial cells, fibroblasts, or myofibroblasts/smooth muscle cells affects intestinal homeostasis. Selective loss of BMPR1A in fibroblasts causes severe histological changes in the intestines with a significant increase in stromal cell content and epithelial cell hyperproliferation, leading to numerous serrated polyps. This phenotype suggests that crucial changes occur in the fibroblast secretome that influences polyp development. Analyses of publicly available RNA expression databases identified CXCL12 as a potential candidate. RNAscope in situ hybridization showed an evident increase of Cxcl12-expressing fibroblasts. In vitro, stimulation of fibroblasts with BMPs resulted in downregulation of CXCL12, while inhibition of the BMP pathway resulted in gradual upregulation of CXCL12 over time. Moreover, neutralization of CXCL12 in vivo in the fibroblast-specific BMPR1A KO mice resulted in a significant decrease in polyp formation. Finally, in CRC patient specimens, mRNA-expression data showed that patients with high GREMLIN1 and CXCL12 expression had a significantly poorer overall survival. Significantly higher GREMLIN1, NOGGIN, and CXCL12 expression were detected in the Consensus Molecular Subtype 4 (CMS4) colorectal cancers, which are thought to arise from serrated polyps. Taken together, these data imply that fibroblast-specific BMP signaling-CXCL12 interaction could have a role in the etiology of serrated polyp formation.
CXCR4, CXCL12 and the relative CXCL12-CXCR4 expression as prognostic factors in colon cancer.

Tumour Biol.

2015 Dec 17

Stanisavljević L, Aßmus J, Storli KE, Leh SM, Dahl O, Myklebust MP.
PMID: 26678887 | DOI: -

The CXCL12-CXCR4 axis is proposed to mediate metastasis formation. In this study, we examined CXCL12, CXCR4 and the relative CXCL12-CXCR4 expression as prognostic factors in two cohorts of colon cancer patients. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to study CXCR4, CXCL12 and relative CXCL12-CXCR4 expression in tissue microarrays. Our study included totally 596 patients, 290 in cohort 1 and 306 in cohort 2. For tumour, node, metastasis (TNM) stage III, low nuclear expression of CXCR4 was a positive prognostic factor for 5-year disease-free survival (DFS) in cohort 1 (P = 0.007) and cohort 2 (P = 0.023). In multivariate analysis for stage III, nuclear expression of CXCR4 in cohort 1 was confirmed as a prognostic factor for DFS (hazard ratio (HR), 0.27; 95 % CI, 0.09 to 0.77). For TNM stage III, high cytoplasmic expression of CXCL12 was associated with better 5-year DFS in both cohorts (P = 0.006 and P = 0.006, respectively). We further validated the positive prognostic value of CXCL12 expression for 5-year DFS in stage III with ISH (P = 0.022). For TNM stage III, the relative CXCL12-CXCR4 expression (CXCL12 > CXCR4 vs CXCL12 = CXCR4 vs CXCL12 < CXCR4) was a prognostic factor for 5-year DFS in cohort 1 (92 % vs 46 % vs 31 %, respectively; P < 0.001) and cohort 2 (92 % vs 66 % vs 30 %, respectively; P = 0.006). In conclusion, CXCL12 and relative CXCL12-CXCR4 expression are independent prognostic factors for 5-year DFS in TNM stage III colon cancer.

miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers

Nat. Commun.

2018 Mar 13

Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, Vincent-Salomon A, Mechta-Grigoriou F.
PMID: - | DOI: 10.1038/s41467-018-03348-z

High-grade serous ovarian cancers (HGSOC) have been subdivided into molecular subtypes. The mesenchymal HGSOC subgroup, defined by stromal-related gene signatures, is invariably associated with poor patient survival. We demonstrate that stroma exerts a key function in mesenchymal HGSOC. We highlight stromal heterogeneity in HGSOC by identifying four subsets of carcinoma-associated fibroblasts (CAF-S1-4). Mesenchymal HGSOC show high content in CAF-S1 fibroblasts, which exhibit immunosuppressive functions by increasing attraction, survival, and differentiation of CD25+FOXP3+ T lymphocytes. The beta isoform of the CXCL12 chemokine (CXCL12β) specifically accumulates in the immunosuppressive CAF-S1 subset through a miR-141/200a dependent-mechanism. Moreover, CXCL12β expression in CAF-S1 cells plays a crucial role in CAF-S1 immunosuppressive activity and is a reliable prognosis factor in HGSOC, in contrast to CXCL12α. Thus, our data highlight the differential regulation of the CXCL12α and CXCL12β isoforms in HGSOC, and reveal a CXCL12β-associated stromal heterogeneity and immunosuppressive environment in mesenchymal HGSOC.

Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

Oncogene.

2018 May 03

Ahirwar DK, Nasser MW, Ouseph MM, Elbaz M, Cuitiño MC, Kladney RD, Varikuti S, Kaul K, Satoskar AR, Ramaswamy B, Zhang X, Ostrowski MC, Leone G, Ganju RK.
PMID: 29720724 | DOI: 10.1038/s41388-018-0263-7

The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

All-trans retinoic acid protects mesenchymal stem cells from immune thrombocytopenia by regulating the complement-IL-1β loop.

Haematologica

2019 Jan 24

Zhu X, Wang Y, Jiang Q, Jiang H, Lu J, Wang Y, Kong Y, Chang Y, Xu L, Peng J, Hou M, Huang X, Zhang X.
PMID: 30679324 | DOI: 10.3324/haematol.2018.204446

Peripheral enhanced complement activation has long been considered as one of the major pathogenesis of immune thrombocytopenia. Impaired bone marrow microenvironment, especially the dysfunction of mesenchymal stem cells, has been observed in patients with immune thrombocytopenia. However, the potential role of the complement system involved in impaired bone marrow microenvironment remains poorly understood. Here, bone marrow samples of patients were divided into the MSC-ITP-C+ and MSC-ITP-C- groups based on the deposition of the complement components on the surfaces of mesenchymal stem cells. Reduced and dysfunctional mesenchymal stem cells, characterized by reduced proliferation capacity, increased apoptosis as well as abnormal secretion of interleukin-1β and C-X-C motif chemokine ligand 12, were observed in the MSC-ITP-C+ group. In vitro treatment with all-trans retinoic acid quantitatively and functionally improved MSC-ITP-C+ by upregulating DNA hypermethylation of the interleukin-1β promoter. In vivo studies showed that all-trans retinoic acid could rescue the impaired mesenchymal stem cells to support the thrombopoietic niche in both patients and the murine model with immune thrombocytopenia. Taken together, these results indicate that deficient mesenchymal stem cells mediated by the complement-IL-1β loop play a role in the pathogenesis of immune thrombocytopenia. All-trans retinoic acid represents a promising therapeutic approach in patients with immune thrombocytopenia by repairing impaired mesenchymal stem cells.

The endogenous preproglucagon system is not essential for gut growth homeostasis in mice

Molecular Metabolism

2017 Apr 27

Wismann P, Barkholt P, Secher T, Vrang N, Hansen HB, Bekker Jeppesen P, Baggio LL, Koehler JA, Drucker DJ, Sandoval DA, Jelsing J.
PMID: - | DOI: 10.1016/j.molmet.2017.04.007

Abstract

Objective

The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice.

Methods

We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r), GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG).

Results

Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r−/− mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology.

Conclusion

The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent.

Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy

Science immunology

2022 Apr 01

Hoch, T;Schulz, D;Eling, N;Gómez, JM;Levesque, MP;Bodenmiller, B;
PMID: 35363540 | DOI: 10.1126/sciimmunol.abk1692

Intratumoral immune cells are crucial for tumor control and antitumor responses during immunotherapy. Immune cell trafficking into tumors is mediated by binding of specific immune cell receptors to chemokines, a class of secreted chemotactic cytokines. To broadly characterize chemokine expression and function in melanoma, we used multiplexed mass cytometry-based imaging of protein markers and RNA transcripts to analyze the chemokine landscape and immune infiltration in metastatic melanoma samples. Tumors that lacked immune infiltration were devoid of most of the profiled chemokines and exhibited low levels of antigen presentation and markers of inflammation. Infiltrated tumors were characterized by expression of multiple chemokines. CXCL9 and CXCL10 were often localized in patches associated with dysfunctional T cells expressing the B lymphocyte chemoattractant CXCL13. In tumors with B cells but no B cell follicles, T cells were the sole source of CXCL13, suggesting that T cells play a role in B cell recruitment and potentially in B cell follicle formation. B cell patches and follicles were also enriched with TCF7+ naïve-like T cells, a cell type that is predictive of response to immune checkpoint blockade. Our data highlight the strength of targeted RNA and protein codetection to analyze tumor immune microenvironments based on chemokine expression and suggest that the formation of tertiary lymphoid structures may be accompanied by naïve and naïve-like T cell recruitment, which may contribute to antitumor activity.
Identification of CXCL12-abundant reticular cells in human adult bone marrow

British journal of haematology

2021 May 01

Aoki, K;Kurashige, M;Ichii, M;Higaki, K;Sugiyama, T;Kaito, T;Ando, W;Sugano, N;Sakai, T;Shibayama, H;HANDAI Clinical Blood Club, ;Takaori-Kondo, A;Morii, E;Kanakura, Y;Nagasawa, T;
PMID: 33837967 | DOI: 10.1111/bjh.17396

A population of mesenchymal stem cells, termed CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells or leptin receptor-expressing cells, are the major cellular component of niches for haematopoietic stem cells (HSCs) in murine bone marrow. CAR cells are characterized by several salient features, including much higher expression of CXCL12, stem cell factor (SCF), forkhead box C1 (FOXC1) and early B-cell factor 3 (EBF3), which are essential for HSC maintenance, than other cells. However, the human counterpart of CAR cells has not been fully described. Here, we show the presence of cells expressing much higher CXCL12 than other cells in human adult bone marrow using a flow cytometry-based in situ technique that enables high-throughput detection of mRNA at single-cell resolution. Most CXCL12hi cells expressed high levels of SCF, FOXC1 and EBF3 and had the potential to differentiate into adipocytes and osteoblasts. Histologically, the nuclei of CXCL12hi cells were identified and quantified by EBF3 expression in fixed marrow sections. CXCL12hi cells sorted from residual bone marrow aspirates of chronic myeloid leukaemia patients expressed reduced levels of CXCL12, SCF, FOXC1 and EBF3 in correlation with increased leukaemic burden. Together, we identified the human counterpart of CAR cells, enabling the evaluation of their alterations in various haematological disorders by flow cytometric and histological analyses.
YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development

bioRxiv : the preprint server for biology

2023 Jan 21

Collins, JM;Lang, A;Parisi, C;Moharrer, Y;Nijsure, MP;Kim, JHT;Szeto, GL;Qin, L;Gottardi, RL;Dyment, NA;Nowlan, NC;Boerckel, JD;
PMID: 36711590 | DOI: 10.1101/2023.01.20.524918

Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.
A spatially resolved atlas of the human lung characterizes a gland-associated immune niche

Nature genetics

2022 Dec 21

Madissoon, E;Oliver, AJ;Kleshchevnikov, V;Wilbrey-Clark, A;Polanski, K;Richoz, N;Ribeiro Orsi, A;Mamanova, L;Bolt, L;Elmentaite, R;Pett, JP;Huang, N;Xu, C;He, P;Dabrowska, M;Pritchard, S;Tuck, L;Prigmore, E;Perera, S;Knights, A;Oszlanczi, A;Hunter, A;Vieira, SF;Patel, M;Lindeboom, RGH;Campos, LS;Matsuo, K;Nakayama, T;Yoshida, M;Worlock, KB;Nikolić, MZ;Georgakopoulos, N;Mahbubani, KT;Saeb-Parsy, K;Bayraktar, OA;Clatworthy, MR;Stegle, O;Kumasaka, N;Teichmann, SA;Meyer, KB;
PMID: 36543915 | DOI: 10.1038/s41588-022-01243-4

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.
Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease

Cell

2018 Sep 27

Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, Wills Q, Bowden R, Richter FC, Ahern D, Puri KD, Henault J, Gervais F, Koohy H, Simmons A.
PMID: - | DOI: 10.1016/j.cell.2018.08.067

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cellfunction. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.

Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Anti-Tumor Innate Immunity.

Cancer Discov.

2017 Mar 08

Patnaik A, Swanson KD, Csizmadia E, Solanki A, Landon-Brace N, Gehring MP, Helenius K, Olson BM, Pyzer AR, Wang LC, Elemento O, Novak J, Thornley TB, Asara JM, Montaser L, Timmons JJ, Morgan TM, Wang Y, Levantini E, Clohessy JG, Kelly K, Pandolfi PP, Rose
PMID: 28274958 | DOI: 10.1158/2159-8290.CD-16-0778

Several kinase inhibitors that target aberrant signaling pathways in tumor cells have been deployed in cancer therapy. However, their impact on the tumor immune microenvironment remains poorly understood. The tyrosine kinase inhibitor cabozantinib showed striking responses in cancer clinical trial patients across several malignancies. Here we show that cabozantinib rapidly eradicates invasive, poorly-differentiated PTEN/p53 deficient murine prostate cancer. This was associated with enhanced release of neutrophil chemotactic factors from tumor cells, including CXCL12 and HMGB1, resulting in robust infiltration of neutrophils into the tumor. Critically, cabozantinib-induced tumor clearance in mice was abolished by antibody-mediated granulocyte depletion or HMGB1 neutralization or blockade of neutrophil chemotaxis with the CXCR4 inhibitor, plerixafor. Collectively, these data demonstrate that cabozantinib triggers a neutrophil-mediated anti-cancer innate immune response, resulting in tumor clearance.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?