Nakajima T, Uehara T, Iwaya M, Kobayashi Y, Maruyama Y, Ota H
PMID: 32293346 | DOI: 10.1186/s12885-020-06791-8
BACKGROUND:
Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a promising intestinal stem cell and carcinoma stem cell marker. We examined the relationship between mismatch repair (MMR) protein deficiency and LGR5 expression in poorly differentiated (PD) colorectal carcinoma (CRC).
METHODS:
In 29 cases of PD-CRC, deficiencies in MMR proteins (MLH1, PMS2, MSH2, MSH6) and ?-catenin expression were identified by immunohistochemistry (IHC). LGR5 expression was examined by the RNAscope assay in tissue microarrays.
RESULTS:
LGR5 H-scores in MMR-deficient (MMR-D) cases were significantly lower than those in MMR-proficient (MMR-P) cases (P?=?0.0033). Nuclear ?-catenin IHC scores in MMR-D cases were significantly lower than those in MMR-P cases (P?=?0.0024). In all cases, there was a positive correlation between LGR5 H-score and nuclear ?-catenin IHC score (r?=?0.6796, P?0.001). Even in MMR-D and MMR-P cases, there was a positive correlation between LGR5 H-score and nuclear ?-catenin IHC score (r?=?0.7180, P?0.0085 and r?=?0.6574, P?0.003, respectively). MMR-D CRC cases showed low expression of LGR5, which may be due to low activation of the Wnt/?-catenin signaling pathway.
CONCLUSIONS:
Our results reveal the relationship between LGR5 expression and MMR protein profiles in PD-CRC. A further study is warranted to confirm these findings.
Yamazaki, S;Inohara, N;Ohmuraya, M;Tsuneoka, Y;Yagita, H;Katagiri, T;Nishina, T;Mikami, T;Funato, H;Araki, K;Nakano, H;
PMID: 35999460 | DOI: 10.1038/s41385-022-00554-3
Control of gut microbes is crucial for not only local defense in the intestine but also proper systemic immune responses. Although intestinal epithelial cells (IECs) play important roles in cytokine-mediated control of enterobacteria, the underlying mechanisms are not fully understood. Here we show that deletion of IκBζ in IECs in mice leads to dysbiosis with marked expansion of segmented filamentous bacteria (SFB), thereby enhancing Th17 cell development and exacerbating inflammatory diseases. Mechanistically, the IκBζ deficiency results in decrease in the number of Paneth cells and impairment in expression of IL-17-inducible genes involved in IgA production. The decrease in Paneth cells is caused by aberrant activation of IFN-γ signaling and a failure of IL-17-dependent recovery from IFN-γ-induced damage. Thus, the IL-17R-IκBζ axis in IECs contributes to the maintenance of intestinal homeostasis by serving as a key component in a regulatory loop between the gut microbiota and immune cells.
Grunddal, KV;Jensen, EP;Ørskov, C;Andersen, DB;Windeløv, JA;Poulsen, SS;Rosenkilde, MM;Knudsen, LB;Pyke, C;Holst, JJ;
PMID: 34662392 | DOI: 10.1210/endocr/bqab216
Therapies based on glucagon-like peptide-1 receptor (GLP-1R) agonism are highly effective in treating type 2 diabetes and obesity, but the localization of GLP-1Rs mediating the antidiabetic and other possible actions of GLP-1 is still debated. The purpose with this study was to identify sites of GLP-1R mRNA and protein expression in the mouse gastrointestinal system by means of GLP-1R antibody immunohistochemistry, Glp1r mRNA fluorescence in situ hybridization, and 125I-exendin (9-39) autoradiography. As expected, GLP-1R staining was observed in almost all β-cells in the pancreatic islets, but more rarely in α- and δ-cells. In the stomach, GLP-1R staining was found exclusively in the gastric corpus mucous neck cells, known to protect the stomach mucosa. The Brunner glands were strongly stained for GLP-1R, and pretreatment with GLP-1 agonist exendin-4 caused internalization of the receptor and mucin secretion, while pretreatment with phosphate-buffered saline or antagonist exendin (9-39) did not. In the intestinal mucosa, GLP-1R staining was observed in intraepithelial lymphocytes, lamina propria lymphocytes, and enteroendocrine cells containing secretin, peptide YY, and somatostatin, but not cholecystokinin. GLP-1R staining was seen in nerve fibers within the choline acetyl transferase- and nitric oxide-positive myenteric plexuses from the gastric corpus to the distal large intestine being strongest in the mid- and hindgut area. Finally, intraperitoneal administration of radiolabeled exendin (9-39) strongly labeled myenteric fibers. In conclusion, this study expands our knowledge of GLP-1R localization and suggests that GLP-1 may serve an important role in modulating gastrointestinal health and mucosal protection.
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society
Tough, IR;Lund, ML;Patel, BA;Schwartz, TW;Cox, HM;
PMID: 37010838 | DOI: 10.1111/nmo.14589
Enterochromaffin (EC) cell-derived 5-hydroxytryptamine (5-HT) is a mediator of toxin-induced reflexes, initiating emesis via vagal and central 5-HT3 receptors. The amine is also involved in gastrointestinal (GI) reflexes that are prosecretory and promotile, and recently 5-HT's roles in chemosensation in the distal bowel have been described. We set out to establish the efficacy of 5-HT signaling, local 5-HT levels and pharmacology in discrete regions of the mouse small and large intestine. We also investigated the inter-relationships between incretin hormones, glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and endogenous 5-HT in mucosal and motility assays.Adult mouse GI mucosae were mounted in Ussing chambers and area-specific studies were performed to establish the 5-HT3 and 5-HT4 pharmacology, the sidedness of responses, and the inter-relationships between incretins and endogenous 5-HT. Natural fecal pellet transit in vitro and full-length GI transit in vivo were also measured.We observed the greatest level of tonic and exogenous 5-HT-induced ion transport and highest levels of 5-HT in ascending colon mucosa. Here both 5-HT3 and 5-HT4 receptors were involved but elsewhere in the GI tract epithelial basolateral 5-HT4 receptors mediate 5-HT's prosecretory effect. Exendin-4 and GIP induced 5-HT release in the ascending colon, while L cell-derived PYY also contributed to GIP mucosal effects in the descending colon. Both peptides slowed colonic transit.We provide functional evidence for paracrine interplay between 5-HT, GLP-1 and GIP, particularly in the colonic mucosal region. Basolateral epithelial 5-HT4 receptors mediated both 5-HT and incretin mucosal responses in healthy colon.
Li J, Yuan Y, He J, Feng J, Han X, Jing J, Ho TV, Xu J, Chai Y.
PMID: 29981310 | DOI: 10.1016/j.ydbio.2018.07.003
Cleft palate is one of the most common craniofacial congenital defects in humans. It is associated with multiple genetic and environmental risk factors, including mutations in the genes encoding signaling molecules in the sonic hedgehog (Shh) pathway, which are risk factors for cleft palate in both humans and mice. However, the function of Shh signaling in the palatal epithelium during palatal fusion remains largely unknown. Although components of the Shh pathway are localized in the palatal epithelium, specific inhibition of Shh signaling in palatal epithelium does not affect palatogenesis. We therefore utilized a hedgehog (Hh) signaling gain-of-function mouse model, K14-Cre;R26SmoM2, to uncover the role of Shh signaling in the palatal epithelium during palatal fusion. In this study, we discovered that constitutive activation of Hh signaling in the palatal epithelium results in submucous cleft palate and persistence of the medial edge epithelium (MEE). Further investigation revealed that precise downregulation of Shh signaling is required at a specific time point in the MEE during palatal fusion. Upregulation of Hh signaling in the palatal epithelium maintains the proliferation of MEE cells. This may be due to a dysfunctional p63/Irf6 regulatory loop. The resistance of MEE cells to apoptosis is likely conferred by enhancement of a cell adhesion network through the maintenance of p63 expression. Collectively, our data illustrate that persistent Hh signaling in the palatal epithelium contributes to the etiology and pathogenesis of submucous cleft palate through its interaction with a p63/Irf6-dependent biological regulatory loop and through a p63-induced cell adhesion network.
Bao L, Rodiger J, Park S, Fu L, Shi B, Cheng SY, Shi YB.
PMID: 30595106 | DOI: 10.1089/thy.2018.0340
Abstract BACKGROUND: Thyroid hormone (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) over 50 years ago and subsequent identification of the genetic mutations only in the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in the RTH patients with THRB gene mutations (RTHβ). That is, the RTHα patients had constipations, implicating intestinal defects caused by THRA gene mutations. METHODS: To determine how TRα1 mutations affect intestine, we have analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant, (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes as observed in patients. RESULTS: In adult Thra1PV/+ mice, we observed constipation just like in patients with TRα mutations. Importantly, we discovered significant intestinal defects, including shorter villi, increased differentiated cells in the crypt, accompanied by reduced stem cell proliferation in the intestine. CONCLUSION: Our findings suggest that further analysis of this mouse model should help reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
PLoS One. 2015 May 21;10(5):e0127300.
Jang BG, Lee BL, Kim WH.
PMID: 26015511 | DOI: clincanres.3357.2014.
Gastric intestinal metaplasia (IM) is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC) marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE)-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.
Jang BG, Kim HS, Chang WY, Bae JM, Oh HJ, Wen X, Jeong S, Cho NY, Kim WH, Kang GH.
PMID: - | DOI: 10.1016/j.humpath.2016.12.018
Cancer associated fibroblasts (CAFs) are the dominant cell population in the cancer stroma. Gremlin 1 (GREM1), an antagonist of the bone morphogenetic protein pathway, is expressed by CAFs in a variety of human cancers. However, its biological significance for cancer patients is largely unknown. We applied RNA in situ hybridization (ISH) to evaluate the prognostic value of stromal GREM1 expression in a large cohort of 670 colorectal cancers (CRCs). Overall GREM1 expression in CRCs was lower than that of the matched normal mucosa, and GREM1 expression had a strong positive correlation with BMI1 and inverse correlations with EPHB2 and OLFM4. RNA ISH localized the GREM expression to smooth muscle cells of the muscularis mucosa, fibroblasts around crypt bases and in the submucosal space of a normal colon. In various colon polyps, epithelial GREM1 expression was exclusively observed in traditional serrated adenomas. In total, 44% of CRCs were positive for stromal GREM1, which was associated with decreased lymphovascular invasion, a lower cancer stage, and nuclear β-catenin staining. Stromal GREM1 was significantly associated with improved recurrence-free and overall survival, although it was not found to be an independent prognostic marker in multivariate analyses. In addition, for locally advanced stage II and III CRCs, it was associated with better, stage-independent clinical outcomes. In summary, CRCs are frequently accompanied by GERM1-expressing fibroblasts, which are closely associated with low lymphovascular invasion and a better prognosis, suggesting stromal GREM1 as a potential biomarker and possible candidate for targeted therapy in the treatment of CRCs.
Jang BG, Lee BL, Kim WH. (2013).
PMID: 24340024 | DOI: 10.1371/journal.pone.0082390.
Lgr5 was identified as a promising gastrointestinal tract stem cell marker in mice. Lineage tracing indicates that Lgr5(+) cells may not only be the cells responsible for the origin of tumors; they may also be the so-called cancer stem cells. In the present study, we investigated the presence of Lgr5(+) cells and their biological significance in normal human gastric mucosa and gastric tumors. RNAscope, a newly developed RNA in situ hybridization technique, specifically labeled Lgr5(+) cells at the basal glands of the gastric antrum. Notably, the number of Lgr5(+) cells was remarkably increased in intestinal metaplasia. In total, 76% of gastric adenomas and 43% of early gastric carcinomas were positive for LGR5. Lgr5(+) cells were found more frequently in low-grade tumors with active Wnt signaling and an intestinal gland type, suggesting that LGR5 is likely involved in the very early stages of Wnt-driven tumorigenesis in the stomach. Interestingly, similar to stem cells in normal tissues, Lgr5(+) cells were often restricted to the base of the tumor glands, and such Lgr5(+) restriction was associated with high levels of intestinal stem cell markers such as EPHB2, OLFM4, and ASCL2. Thus, our findings show that Lgr5(+) cells are present at the base of the antral glands in the human stomach and that this cell population significantly expands in intestinal metaplasias. Furthermore, Lgr5(+) cells are seen in a large number of gastric tumors ; their frequent basal arrangements and coexpression of ISC markers support the idea that Lgr5(+) cells act as stem cells during the early stage of intestinal-type gastric tumorigenesis.
Senger S, Sapone A, Fiorentino MR, Mazzarella G, Lauwers GY, Fasano A.
PMID: 26649570 | DOI: 10.1371/journal.pone.0144634
Abstract
BACKGROUND:
In celiac disease (CD), intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh)/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology.
METHODS AND FINDINGS:
Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC) and 24 patients with diagnosed acute celiac disease (A-CD) intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5), an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH) and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2.
CONCLUSIONS:
Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease.
De Cian MC, Gregoire EP, Le Rolle M, Lachambre S, Mondin M, Bell S, Guigon CJ, Chassot AA, Chaboissier MC
PMID: 32341451 | DOI: 10.1038/s41418-020-0547-7
R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/?-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally. Strikingly, follicles lacking Ctnnb1 failed to develop beyond the primary stage. These results show that RSPO2 acts in a paracrine manner to sustain granulosa cell proliferation in early developing follicles. Taken together, our data demonstrate that the activation of WNT/CTNNB1 signaling by RSPO2 is essential for oocyte-granulosa cell interactions that drive maturation of the ovarian follicles and eventually female fertility
Sci Rep. 2015 Mar 2;5:8654.
Baker AM, Graham TA, Elia G, Wright NA, Rodriguez-Justo M.
PMID: 25728748 | DOI: 10.1038/srep08654
LGR5 is known to be a stem cell marker in the murine small intestine and colon, however the localization of LGR5 in human adenoma samples has not been examined in detail, and previous studies have been limited by the lack of specific antibodies. Here we used in situ hybridization to specifically examine LGR5 mRNA expression in a panel of human adenoma and carcinoma samples (n = 66). We found that a small number of cells express LGR5 at the base of normal colonic crypts. We then showed that conventional adenomas widely express high levels of LGR5, and there is no evidence of stereotypic cellular hierarchy. In contrast, serrated lesions display basal localization of LGR5, and the cellular hierarchy resembles that of a normal crypt. Moreover, ectopic crypts found in traditional serrated adenomas show basal LGR5 mRNA, indicating that they replicate the stem cell organization of normal crypts with the development of a cellular hierarchy. These data imply differences in the stem cell dynamics between the serrated and conventional pathways of colorectal carcinogenesis. Furthermore we noted high LGR5 expression in invading cells, with later development of a stem cell niche in adenocarcinomas of all stages.