ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
NPJ Parkinson's disease
2023 Apr 26
Buhidma, Y;Hobbs, C;Malcangio, M;Duty, S;
PMID: 37100804 | DOI: 10.1038/s41531-023-00510-3
Diabetes Obes Metab.
2018 Apr 29
Hebsgaard JB, Pyke C, Yildirim E, Knudsen LB, Heegaard S, Kvist PH.
PMID: 29707863 | DOI: 10.1111/dom.13339
Semaglutide is a human glucagon-like peptide-1 (GLP-1) analogue that is in development for the treatment of type 2 diabetes. In the pre-approval cardiovascular outcomes trial SUSTAIN 6, semaglutide was associated with a significant increase in the risk of diabetic retinopathy (DR) complications vs placebo. GLP-1 receptor (GLP-1R) expression has previously been demonstrated in the retina in animals and humans; however, antibodies used to detect expression have been documented to be non-specific and fail to detect the GLP-1R using immunohistochemistry (IHC), a problem common for many G-protein coupled receptors. Using a validated GLP-1R antibody for IHC and in situ hybridization for GLP-1R mRNA in normal human eyes, GLP-1Rs were detected in a small fraction of neurons in the ganglion cell layer. In advanced stages of DR, GLP-1R expression was not detected at the protein or mRNA level. Specifically, no GLP-1R expression was found in the eyes of people with long-standing proliferative DR (PDR). In conclusion, GLP-1R expression is low in normal human eyes and was not detected in eyes exhibiting advanced stages of PDR.
Brain Struct Funct. 2015 Jul 10.
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB.
PMID: 26159773
J Neuroendocrinol.
2019 Apr 29
Anesten F, Dalmau Gasull A, Richard JE, Farkas I, Mishra D, Taing L, Zhang FP, Poutanen M, Palsdottir V, Liposits Z, Skibicka KP, Jansson JO.
PMID: 31033078 | DOI: 10.1111/jne.12722
Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centers for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin-6 (IL-6) can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 receptor (GLP-1R) stimulation in the brain, but the sites of these effects are largely unknown. We here used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibers co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and get increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6 receptor-alpha present in this nucleus.
Anat Rec (Hoboken).
2018 Oct 12
Hackett TA
PMID: 30315630 | DOI: 10.1002/ar.23907
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co-transmitters, or serve as signals in neuron-glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1 R). In the auditory forebrain, restriction of A1 R-adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1 R-mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1 R transcripts (Adora1), based on co-expression with cell-specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1 R-mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1 R-adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here.
Pancreas.
2016 Apr 01
Dal Molin M, Kim H, Blackford A, Sharma R, Goggins M.
PMID: 26495786 | DOI: 10.1097/MPA.0000000000000521.
Studies have proposed pro-oncogenic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists in the pancreas by promoting GLP-1R overactivation in pancreatic cells. However, the expression of GLP-1R in normal and neoplastic pancreatic cells remains poorly defined, and reliable methods for detecting GLP-1R in tissue specimens are needed.
We used RNA in situ hybridization to quantify glp-1r RNA in surgically resected human pancreatic specimens, including pancreatic ductal adenocarcinoma (PDAC), preinvasive intraepithelial lesions (pancreatic intraepithelial neoplasia), and non-neoplastic ductal, acinar, and endocrine cells. A mixed-effect linear regression model was used to investigate the relationship between glp-1r signals and all cells, ordered by increasing grade of dysplasia.
All cell types had evidence of glp-1r transcripts, with the highest expression in endocrine cells and lowest in ductal cells. The slope of the fitted line was not significantly different from zero (0.07; 95% confidence interval, -0.0094 to 0.244; P = 0.39), suggesting that progression from normal cells to PDAC is not associated with a parallel increase in glp-1r RNA. A series of pairwise comparisons between all cell types with respect to their glp-1r expression showed no significant difference in glp-1r in cancer, pancreatic intraepithelial neoplasia, and acinar and ductal cells.
Our study supports the lack of evidence for GLP-1R overexpression in PDAC.
J Int J Clin Exp Pathol (2018)
2018 Nov 15
Cui L, Qu C, Liu H.
| DOI: ISSN:1936-2625/IJCEP0085220
Annals of oncology : official journal of the European Society for Medical Oncology
2022 May 04
Rischin, D;Mehanna, H;Young, RJ;Bressel, M;Dunn, J;Corry, J;Soni, P;Fulton-Lieuw, T;Iqbal, G;Kenny, L;Porceddu, S;Wratten, C;Robinson, M;Solomon, BJ;Trans-Tasman Radiation Oncology Group and the De-ESCALaTE HPV Trial Group, ;
PMID: 35525376 | DOI: 10.1016/j.annonc.2022.04.074
Head Neck Pathol.
2017 Feb 08
Rooper LM, Bishop JA, Westra WH.
PMID: 28181187 | DOI: 10.1007/s12105-017-0779-0
The role of human papillomavirus (HPV) as an etiologic and transformational agent in inverted Schneiderian papilloma (ISP) is unclear. Indeed, reported detection rates of HPV in ISPs range from 0 to 100%. The true incidence has been confounded by a tendency to conflate high- and low-risk HPV types and by the inability to discern biologically relevant from irrelevant HPV infections. The recent development of RNA in situ hybridization for high-risk HPV E6/E7 mRNA now allows the direct visualization of transcriptionally active high-risk HPV in ISP, providing an opportunity to more definitively assess its role in the development and progression of ISPs. We performed p16 immunohistochemistry and high-risk HPV RNA in situ hybridization on 30 benign ISPs, 7 ISPs with dysplasia, 16 ISPs with carcinomatous transformation, and 7 non-keratinizing squamous cell carcinomas (SCCs) with inverted growth that were unassociated with ISP. Transcriptionally active HPV was not detected in any of the 52 ISPs including those that had undergone carcinomatous transformation, but it was detected in two of seven (29%) non-keratinizing SCCs that showed inverted growth. There was a strong correlation between high-risk HPV RNA in situ hybridization and p16 immunohistochemistry (97%; p < 0.01). These results indicate that transcriptionally active high-risk HPV does not play a common role in either the development of ISP or in its transformation into carcinoma.
The Journal of experimental medicine
2022 Jun 06
Hanuscheck, N;Thalman, C;Domingues, M;Schmaul, S;Muthuraman, M;Hetsch, F;Ecker, M;Endle, H;Oshaghi, M;Martino, G;Kuhlmann, T;Bozek, K;van Beers, T;Bittner, S;von Engelhardt, J;Vogt, J;Vogelaar, CF;Zipp, F;
PMID: 35587822 | DOI: 10.1084/jem.20211887
Endocrinology
2022 Jan 01
Grunddal, KV;Jensen, EP;Ørskov, C;Andersen, DB;Windeløv, JA;Poulsen, SS;Rosenkilde, MM;Knudsen, LB;Pyke, C;Holst, JJ;
PMID: 34662392 | DOI: 10.1210/endocr/bqab216
Mol Psychiatry.
2017 Mar 21
Yan L, Shamir A, Skirzewski M, Leiva-Salcedo E, Kwon OB, Karavanova I, Paredes D, Malkesman O, Bailey KR, Vullhorst D, Crawley JN, Buonanno A.
PMID: 28322273 | DOI: 10.1038/mp.2017.22
Numerous genetic and functional studies implicate variants of Neuregulin-1 (NRG1) and its neuronal receptor ErbB4 in schizophrenia and many of its endophenotypes. Although the neurophysiological and behavioral phenotypes of NRG1 mutant mice have been investigated extensively, practically nothing is known about the function of NRG2, the closest NRG1 homolog. We found that NRG2 expression in the adult rodent brain does not overlap with NRG1 and is more extensive than originally reported, including expression in the striatum and medial prefrontal cortex (mPFC), and therefore generated NRG2 knockout mice (KO) to study its function. NRG2 KOs have higher extracellular dopamine levels in the dorsal striatum but lower levels in the mPFC; a pattern with similarities to dopamine dysbalance in schizophrenia. Like ErbB4 KO mice, NRG2 KOs performed abnormally in a battery of behavioral tasks relevant to psychiatric disorders. NRG2 KOs exhibit hyperactivity in a novelty-induced open field, deficits in prepulse inhibition, hypersensitivity to amphetamine, antisocial behaviors, reduced anxiety-like behavior in the elevated plus maze and deficits in the T-maze alteration reward test-a task dependent on hippocampal and mPFC function. Acute administration of clozapine rapidly increased extracellular dopamine levels in the mPFC and improved alternation T-maze performance. Similar to mice treated chronically with N-methyl-d-aspartate receptor (NMDAR) antagonists, we demonstrate that NMDAR synaptic currents in NRG2 KOs are augmented at hippocampal glutamatergic synapses and are more sensitive to ifenprodil, indicating an increased contribution of GluN2B-containing NMDARs. Our findings reveal a novel role for NRG2 in the modulation of behaviors with relevance to psychiatric disorders.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com