Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (21)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • (-) Remove GLI1 filter GLI1 (15)
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • (-) Remove GREM1 filter GREM1 (7)
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.5 HD Red assay (6) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • (-) Remove Cancer filter Cancer (21)
  • Neuroscience (2) Apply Neuroscience filter
  • Stem Cells (2) Apply Stem Cells filter
  • Development (1) Apply Development filter
  • Fibrosis (1) Apply Fibrosis filter
  • Inflammation (1) Apply Inflammation filter

Category

  • Publications (21) Apply Publications filter
GREM1 is expressed in the cancer-associated myofibroblasts of basal cell carcinomas

PLoS One.

2017 Mar 27

Kim HS, Shin MS, Cheon MS, Kim JW, Lee C, Kim WH, Kim YS, Jang BG.
PMID: 28346486 | DOI: 10.1371/journal.pone.0174565

Cancer-associated fibroblasts (CAFs) play important roles in cancer progression through their complex interactions with cancer cells. The secreted bone morphogenetic protein antagonist, gremlin1 (GREM1) is expressed by the CAFs of basal cell carcinomas (BCCs), and promotes the growth of cancer cells. In this study, we investigated the expression of GREM1 mRNAs in various benign and malignant skin tumors, including various BCC subtypes. Analysis by RNA in situ hybridization (ISH) revealed that fibroblasts in the scar tissue expressed GREM1 and α-smooth muscle actin (α-SMA), whereas resident fibroblasts in the dermis of the normal skin did not express GREM1. Real-time polymerase chain reaction analysis showed significantly higher GREM1 expression in skin cancers and pilomatricomas (PMCs) than in other benign skin tumors. Tissue microarrays analyzed by RNA ISH for GREM1 expression also demonstrated that 23% of BCCs, 42% of squamous cell carcinomas, 20% of melanomas, and 90% of PMCs were positive for GREM1 expression, whereas trichoepitheliomas, eccrine poromas, hidradenomas, and spiradenomas were negative for GREM1 expression. Most BCCs that were GREM1 expression positive were of desmoplastic or mixed subtypes, and GREM1 expression was localized to activated myofibroblasts at the tumoral-stromal interface. Interestingly, most PMCs harbored GREM1-expressing fibroblasts, probably because of the inflammatory responses caused by foreign body reactions to keratin. Additionally, in BCCs, stromal GREM1 expression had a strong correlation with CD10 expression. In conclusion, GREM1 is frequently expressed by myofibroblasts in scars or in the stroma of basal cell carcinomas, suggesting that GREM1 expression can be a marker for activated myofibroblasts in the cancer stroma or in scar tissue.

Prognostic significance of stromal GREM1 expression in colorectal cancer

Human Pathology

2016 Dec 30

Jang BG, Kim HS, Chang WY, Bae JM, Oh HJ, Wen X, Jeong S, Cho NY, Kim WH, Kang GH.
PMID: - | DOI: 10.1016/j.humpath.2016.12.018

Cancer associated fibroblasts (CAFs) are the dominant cell population in the cancer stroma. Gremlin 1 (GREM1), an antagonist of the bone morphogenetic protein pathway, is expressed by CAFs in a variety of human cancers. However, its biological significance for cancer patients is largely unknown. We applied RNA in situ hybridization (ISH) to evaluate the prognostic value of stromal GREM1 expression in a large cohort of 670 colorectal cancers (CRCs). Overall GREM1 expression in CRCs was lower than that of the matched normal mucosa, and GREM1 expression had a strong positive correlation with BMI1 and inverse correlations with EPHB2 and OLFM4. RNA ISH localized the GREM expression to smooth muscle cells of the muscularis mucosa, fibroblasts around crypt bases and in the submucosal space of a normal colon. In various colon polyps, epithelial GREM1 expression was exclusively observed in traditional serrated adenomas. In total, 44% of CRCs were positive for stromal GREM1, which was associated with decreased lymphovascular invasion, a lower cancer stage, and nuclear β-catenin staining. Stromal GREM1 was significantly associated with improved recurrence-free and overall survival, although it was not found to be an independent prognostic marker in multivariate analyses. In addition, for locally advanced stage II and III CRCs, it was associated with better, stage-independent clinical outcomes. In summary, CRCs are frequently accompanied by GERM1-expressing fibroblasts, which are closely associated with low lymphovascular invasion and a better prognosis, suggesting stromal GREM1 as a potential biomarker and possible candidate for targeted therapy in the treatment of CRCs.

GREM1 is required to maintain cellular heterogeneity in pancreatic cancer

Nature

2022 Jul 01

Lan, L;Evan, T;Li, H;Hussain, A;Ruiz, EJ;Zaw Thin, M;Ferreira, RMM;Ps, H;Riising, EM;Zen, Y;Almagro, J;Ng, KW;Soro-Barrio, P;Nelson, J;Koifman, G;Carvalho, J;Nye, EL;He, Y;Zhang, C;Sadanandam, A;Behrens, A;
PMID: 35768509 | DOI: 10.1038/s41586-022-04888-7

Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.
Regulation and Role of GLI1 in Cutaneous Squamous Cell Carcinoma Pathogenesis.

Front Genet

2019 Dec 04

Pyczek J, Khizanishvili N, Kuzyakova M, Zabel S, Bauer J, Nitzki F, Emmert S, Sch�n MP, Boukamp P, Schildhaus HU, Uhmann A, Hahn H
PMID: 31867038 | DOI: 10.3389/fgene.2019.01185

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin tumor in humans. Although current therapies are sufficient to clear the tumor in many cases, the overall risk of cSCC metastasis is still 5%. Alternative treatment options could help to overcome this situation. Here we focused on the role of the Hedgehog (HH) signaling pathway and its interplay with epidermal growth factor receptor (EGFR) signaling in cSCC. The analyses revealed that, despite lack of Sonic HH (SHH) expression, a subset of human cSCC can express GLI1, a marker for active HH signaling, within distinct tumor areas. In contrast, all tumors strongly express EGFR and the hair follicle stem cell marker SOX9 at the highly proliferative tumor-stroma interface, whereas central tumor regions with a more differentiated stratum spinosum cell type lack both EGFR and SOX9 expression. In vitro experiments indicate that activation of EGFR signaling in the human cSCC cell lines SCL-1, MET-1, and MET-4 leads to GLI1 inhibition via the MEK/ERK axis without affecting cellular proliferation. Of note, EGFR activation also inhibits cellular migration of SCL-1 and MET-4 cells. Because proliferation and migration of the cells is also not altered by a GLI1 knockdown, GLI1 is apparently not involved in processes of aggressiveness in established cSCC tumors. In contrast, our data rather suggest a negative correlation between Gli1 expression level and cSCC formation because skin of Ptch +/- mice with slightly elevated Gli1 expression levels is significantly less susceptible to chemically-induced cSCC formation compared to murine wildtype skin. Although not yet formally validated, these data open the possibility that GLI1 (and thus HH signaling) may antagonize cSCC initiation and is not involved in cSCC aggressiveness, at least in a subset of cSCC.
INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma.

Oncogene

2017 May 01

Yang N, Leung EL, Liu C, Li L, Eguether T, Jun Yao XJ, Jones EC, Norris DA, Liu A, Clark RA, Roop DR, Pazour GJ, Shroyer KR, Chen J.
PMID: 28459465 | DOI: 10.1038/onc.2017.117

Inturned (INTU), a cilia and planar polarity effector, performs prominent ciliogenic functions during morphogenesis, such as in the skin. INTU is expressed in adult tissues but its role in tissue maintenance is unknown. Here, we report that the expression of the INTU gene is aberrantly elevated in human basal cell carcinoma (BCC), coinciding with increased primary cilia formation and activated hedgehog (Hh) signaling. Disrupting Intu in an oncogenic mutant Smo (SmoM2)-driven BCC mouse model prevented the formation of BCC through suppressing primary cilia formation and Hh signaling, suggesting that Intu performs a permissive role during BCC formation. INTU is essential for intraflagellar transport A complex assembly during ciliogenesis. To further determine whether Intu is directly involved in the activation of Hh signaling downstream of ciliogenesis, we examined the Hh signaling pathway in mouse embryonic fibroblasts, which readily responds to the Hh pathway activation. Depleting Intu blocked Smo agonist-induced Hh pathway activation, whereas the expression of Gli2ΔN, a constitutively active Gli2, restored Hh pathway activation in Intu-deficient cells, suggesting that INTU functions upstream of Gli2 activation. In contrast, overexpressing Intu did not promote ciliogenesis or Hh signaling. Taken together, data obtained from this study suggest that INTU is indispensable during BCC tumorigenesis and that its aberrant upregulation is likely a prerequisite for primary cilia formation during Hh-dependent tumorigenesis.

Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling

Reprod Biol Endocrinol.

2017 Nov 08

Gao Y, Fang X, Vincent DF, Threadgill DW, Bartholin L, Li Q.
PMID: 29221447 | DOI: 10.1186/s12958-017-0312-z

Abstract

BACKGROUND:

Transforming growth factor beta (TGFB) superfamily signaling is implicated in the development of sex cord-stromal tumors, a category of poorly defined gonadal tumors. The aim of this study was to determine potential effects of dysregulated TGFB signaling in the ovary using Cre recombinase driven by growth differentiation factor 9 (Gdf9) promoter known to be expressed in oocytes.

METHODS:

A mouse model containing constitutively active TGFBR1 (TGFBR1CA) using Gdf9-iCre (termed TGFBR1-CAG9Cre) was generated. Hematoxylin and eosin (H & E) staining, follicle counting, and immunohistochemistry and immunofluorescence analyses using antibodies directed to Ki67, forkhead box L2 (FOXL2), forkhead box O1 (FOXO1), inhibin alpha (INHA), and SRY (sex determining region Y)-box 9 were performed to determine the characteristics of the TGFBR1-CAG9Cre ovary. Terminal deoxynucleotidyl transferase (TdT) labeling of 3'-OH ends of DNA fragments, real-time PCR, and western blotting were used to examine apoptosis, select gene expression, and TGFBR1 activation. RNAscope in situ hybridization was used to localize the expression of GLI-Kruppel family member GLI1 (Gli1) in ovarian tumortissues.

RESULTS:

TGFBR1-CAG9Cre females were sterile. Sustained activation of TGFBR1 led to altered granulosa cell proliferation evidenced by high expression of Ki67. At an early age, these mice demonstrated follicular defects and development of ovarian granulosa cell tumors, which were immunoreactive for granulosa cell markers including FOXL2, FOXO1, and INHA. Further histochemical and molecular analyses provided evidence of overactivation of TGFBR1 in the granulosa cell compartment during ovarian pathogenesis in TGFBR1-CAG9Cre mice, along with upregulation of Gli1 and Gli2 and downregulation of Tgfbr3 in ovarian tumor tissues.

CONCLUSIONS:

These results reinforce the role of constitutively active TGFBR1 in promoting ovarian tumorigenesis in mice. The mouse model created in this study may be further exploited to define the cellular and molecular mechanisms of TGFB/activin downstream signaling in granulosa cell tumor development. Future studies are needed to test whether activation of TGFB/activin signaling contributes to the development of human granulosa cell tumors.

Indian Hedgehog links obesity to development of hepatocellular carcinoma.

Oncogene.

2018 Nov 23

Chong YC, Lim TE, Fu Y, Shin EM, Tergaonkar V, Han W.
PMID: 30470823 | DOI: 10.1038/s41388-018-0585-5

Obesity increases the risk of hepatocellular carcinoma (HCC), but precise identification and characterization of druggable oncogenic pathways that contribute to the progression of NAFLD to HCC, and hence to the increased incidence and aggressiveness of HCC in obese individuals is lacking. In this regard, we demonstrate that the Indian Hedgehog (Ihh) signaling pathway is upregulated in the fatty livers of mice consuming a high fat diet, and furthermore sustained in HCC tumors specifically within the context of a NAFLD microenvironment. Using a diet-induced mouse model of HCC wherein only obese mice develop HCC, targeted ablation of hepatocyte-secreted Ihh results in a decreased tumor burden and lower grade tumors. Ihh activation regulates the transdifferentiation of ciliated stellate cells and proliferation of Epcam+ ductal cells to promote fibrosis. Mechanistically, increased expression of hitherto uncharacterized effectors of Hh pathway, namely Myc and Tgf-β2 is critical to the observed physiology. This pro-tumorigenic response is driven by increased expression of Wnt5a to effect a poorly-differentiated and invasive tumor phenotype. Wnt5a secreted from activated stellate cells act on Ror2-expressing hepatocytes. We further demonstrate that Wnt5a expression is also elevated in poorly-differentiated HCC cells, suggesting that these ligands are also able to function in an autocrine positive feedback manner to sustain poorly-differentiated tumors. Taken together, our study provides a mechanistic understanding for how Ihh signaling promotes HCC tumorigenesis specifically in obese mice. We propose that therapeutic targeting of the Hh pathway offers benefit for patients with dietary / NAFLD-driven steatotic HCC.

Expression of Hedgehog ligand and signal transduction components in mutually distinct isocitrate dehydrogenase mutant glioma cells supports a role for paracrine signaling

J Neurooncol. 2014 May 28.

Abiria SA, Williams TV, Munden AL, Grover VK, Wallace A, Lundberg CJ, Valadez JG, Cooper MK.
PMID: 24867209

Hedgehog (Hh) signaling regulates the growth of malignant gliomas by a ligand-dependent mechanism. The cellular source of Sonic Hh ligand and mode of signaling have not been clearly defined due to the lack of methods to definitively identify neoplastic cells in glioma specimens. Using an antibody specific for mutant isocitrate dehydrogenase protein expression to identify glioma cells, we demonstrate that Sonic Hh ligand and the pathway components Patched1 (PTCH1) and GLI1 are expressed in neoplastic cells. Further, Sonic Hh ligand and its transcriptional targets, PTCH1 and GLI1, are expressed in mutually distinct populations of neoplastic cells. These findings support a paracrine mode of intratumoral Hh signaling in malignant gliomas.
Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth

Nat Commun.

2016 Aug 05

Gerling M, Büller NV, Kirn LM, Joost S, Frings O, Englert B, Bergström Å, Kuiper RV, Blaas L, Wielenga MC, Almer S, Kühl AA, Fredlund E, van den Brink GR, Toftgård R.
PMID: 27492255 | DOI: 10.1038/ncomms12321

A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppressor.

Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells.

Nat Cell Biol.

2016 Mar 21

Li L, Grausam KB, Wang J, Lun MP, Ohli J, Lidov HG, Calicchio ML, Zeng E, Salisbury JL, Wechsler-Reya RJ, Lehtinen MK, Schüller U, Zhao H.
PMID: 26999738 | DOI: 10.1038/ncb3327

Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues.

Cross-tissue organization of the fibroblast lineage

Nature

2021 May 01

Buechler, MB;Pradhan, RN;Krishnamurty, AT;Cox, C;Calviello, AK;Wang, AW;Yang, YA;Tam, L;Caothien, R;Roose-Girma, M;Modrusan, Z;Arron, JR;Bourgon, R;Müller, S;Turley, SJ;
PMID: 33981032 | DOI: 10.1038/s41586-021-03549-5

Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.
Utility of GLI1 RNA chromogenic in situ hybridization in distinguishing basal cell carcinoma from histopathologic mimics

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2023 Jun 28

Menge, TD;Durgin, JS;Hrycaj, SM;Brent, AA;Patel, RM;Harms, PW;Fullen, DR;Chan, MP;Bresler, SC;
PMID: 37391171 | DOI: 10.1016/j.modpat.2023.100265

Basal cell carcinoma (BCC) is the most common human malignancy and is a leading cause of non-melanoma skin cancer-related morbidity. BCC has several histologic mimics which may have treatment and prognostic implications. Furthermore, BCC may show alternative differentiation toward a variety of cutaneous structures. The vast majority of BCCs harbor mutations in the hedgehog signaling pathway, resulting in increased expression of the GLI family of transcription factors. GLI1 immunohistochemistry has been shown to discriminate between several tumor types but demonstrates high background signal and lack of specificity. In this study we evaluate the utility of GLI1 RNA chromogenic in situ hybridization (CISH) as a novel method of distinguishing between BCC and other epithelial neoplasms. Expression of GLI1 by RNA CISH was retrospectively evaluated in a total of 220 cases including 60 BCCs, 37 squamous cell carcinomas (SCCs) including conventional, basaloid, and HPV-associated tumors, 16 sebaceous neoplasms, 10 Merkel cell carcinomas (MCCs), 58 benign follicular tumors, and 39 ductal tumors. The threshold for positivity was determined to be greater than or equal to 3 GLI1 signals in at least 50% of tumor cells. Positive GLI1 expression was identified in 57/60 BCCs including metastatic BCC, collision lesions with SCC, and BCCs with squamous, ductal, or clear cell differentiation or with other unusual features, as compared to 1/37 SCCs, 0/11 sebaceous carcinomas, 0/5 sebaceomas, 1/10 MCCs, 0/39 ductal tumors, and 28/58 follicular tumors. With careful evaluation, GLI1 RNA CISH is highly sensitive (95%) and specific (98%) in distinguishing between BCC and non-follicular epithelial neoplasms. However, GLI1 CISH is not specific for distinguishing BCC from most benign follicular tumors. Overall, detection of GLI1RNA by CISH may be a useful tool for precise classification of histologically challenging basaloid tumors, particularly in the setting of small biopsy specimens, metaplastic differentiation, or metastatic disease.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?