Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Coveney, CR;Samvelyan, HJ;Miotla-Zarebska, J;Carnegie, J;Chang, E;Corrin, CJ;Coveney, T;Stott, B;Parisi, I;Duarte, C;Vincent, TL;Staines, KA;Wann, AKT;
PMID: 35038201 | DOI: 10.1002/jbmr.4502
In comparison to our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programmes including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signalling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl ) in the juvenile and adolescent skeleton using a cartilage-specific, inducible, Cre (AggrecanCreERT2 Ift88fl/fl ). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption and mineralisation. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. While normal patterns of hedgehog signalling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilisation inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces. This article is protected by
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Menge, TD;Durgin, JS;Hrycaj, SM;Brent, AA;Patel, RM;Harms, PW;Fullen, DR;Chan, MP;Bresler, SC;
PMID: 37391171 | DOI: 10.1016/j.modpat.2023.100265
Basal cell carcinoma (BCC) is the most common human malignancy and is a leading cause of non-melanoma skin cancer-related morbidity. BCC has several histologic mimics which may have treatment and prognostic implications. Furthermore, BCC may show alternative differentiation toward a variety of cutaneous structures. The vast majority of BCCs harbor mutations in the hedgehog signaling pathway, resulting in increased expression of the GLI family of transcription factors. GLI1 immunohistochemistry has been shown to discriminate between several tumor types but demonstrates high background signal and lack of specificity. In this study we evaluate the utility of GLI1 RNA chromogenic in situ hybridization (CISH) as a novel method of distinguishing between BCC and other epithelial neoplasms. Expression of GLI1 by RNA CISH was retrospectively evaluated in a total of 220 cases including 60 BCCs, 37 squamous cell carcinomas (SCCs) including conventional, basaloid, and HPV-associated tumors, 16 sebaceous neoplasms, 10 Merkel cell carcinomas (MCCs), 58 benign follicular tumors, and 39 ductal tumors. The threshold for positivity was determined to be greater than or equal to 3 GLI1 signals in at least 50% of tumor cells. Positive GLI1 expression was identified in 57/60 BCCs including metastatic BCC, collision lesions with SCC, and BCCs with squamous, ductal, or clear cell differentiation or with other unusual features, as compared to 1/37 SCCs, 0/11 sebaceous carcinomas, 0/5 sebaceomas, 1/10 MCCs, 0/39 ductal tumors, and 28/58 follicular tumors. With careful evaluation, GLI1 RNA CISH is highly sensitive (95%) and specific (98%) in distinguishing between BCC and non-follicular epithelial neoplasms. However, GLI1 CISH is not specific for distinguishing BCC from most benign follicular tumors. Overall, detection of GLI1RNA by CISH may be a useful tool for precise classification of histologically challenging basaloid tumors, particularly in the setting of small biopsy specimens, metaplastic differentiation, or metastatic disease.
Lückemeyer, DD;Xie, W;Prudente, AS;Qualls, KA;Tonello, R;Strong, JA;Berta, T;Zhang, JM;
PMID: 37165177 | DOI: 10.1007/s12264-023-01062-5
Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-β (TGF-β) and its receptor TGF-βR1. Here, we examined the role of TGF-β in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-β1 and TGF-βR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-β1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-βR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-β signaling is a general underlying mechanism of local sympathetic blockade.
Kum, JJY;Howlett, CJ;Khan, ZA;
PMID: 36307522 | DOI: 10.1038/s42003-022-04112-2
Diabetes affects select organs such as the eyes, kidney, heart, and brain. Our recent studies show that diabetes also enhances adipogenesis in the bone marrow and reduces the number of marrow-resident vascular regenerative stem cells. In the current study, we have performed a detailed spatio-temporal examination to identify the early changes that are induced by diabetes in the bone marrow. Here we show that short-term diabetes causes structural and molecular changes in the marrow, including enhanced adipogenesis in tibiae of mice, prior to stem cell depletion. This enhanced adipogenesis was associated with suppressed transforming growth factor-beta (TGFB) signaling. Using human bone marrow-derived mesenchymal progenitor cells, we show that TGFB pathway suppresses adipogenic differentiation through TGFB-activated kinase 1 (TAK1). These findings may inform the development of novel therapeutic targets for patients with diabetes to restore regenerative stem cell function.
Sánchez-Danés A, Larsimont JC, Liagre M, Muñoz-Couselo E, Lapouge G, Brisebarre A, Dubois C, Suppa M, Sukumaran V, Del Marmol V, Tabernero J, Blanpain C.
PMID: 30297799 | DOI: 10.1038/s41586-018-0603-3
Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoothened inhibitor, leads to BCC shrinkage in the majority of patients with BCC3, but the mechanism by which it mediates BCC regression is unknown. Here we used two genetically engineered mouse models of BCC4 to investigate the mechanisms by which inhibition of Smoothened mediates tumour regression. We found that vismodegib mediates BCC regression by inhibiting a hair follicle-like fate and promoting the differentiation of tumour cells. However, a small population of tumour cells persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting, slow-cycling tumour population expresses LGR5 and is characterized by active Wnt signalling. Combining Lgr5 lineage ablation or inhibition of Wnt signalling with vismodegib treatment leads to eradication of BCC. Our results show that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors is a clinically relevant strategy for overcoming tumour relapse in BCC.
Kaucka, M;Joven Araus, A;Tesarova, M;Currie, JD;Boström, J;Kavkova, M;Petersen, J;Yao, Z;Bouchnita, A;Hellander, A;Zikmund, T;Elewa, A;Newton, PT;Fei, JF;Chagin, AS;Fried, K;Tanaka, EM;Kaiser, J;Simon, A;Adameyko, I;
PMID: 36376278 | DOI: 10.1038/s41467-022-34266-w
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
Manti, PG;Darbellay, F;Leleu, M;Coughlan, AY;Moret, B;Cuennet, J;Droux, F;Stoudmann, M;Mancini, GF;Hautier, A;Sordet-Dessimoz, J;Vincent, SD;Testa, G;Cossu, G;Barrandon, Y;
PMID: 36289911 | DOI: 10.3390/biomedicines10102647
Prdm1 mutant mice are one of the rare mutant strains that do not develop whisker hair follicles while still displaying a pelage. Here, we show that Prdm1 is expressed at the earliest stage of whisker development in clusters of mesenchymal cells before placode formation. Its conditional knockout in the murine soma leads to the loss of expression of Bmp2, Shh, Bmp4, Krt17, Edar, and Gli1, though leaving the β-catenin-driven first dermal signal intact. Furthermore, we show that Prdm1 expressing cells not only act as a signaling center but also as a multipotent progenitor population contributing to the several lineages of the adult whisker. We confirm by genetic ablation experiments that the absence of macro vibrissae reverberates on the organization of nerve wiring in the mystacial pads and leads to the reorganization of the barrel cortex. We demonstrate that Lef1 acts upstream of Prdm1 and identify a primate-specific deletion of a Lef1 enhancer named Leaf. This loss may have been significant in the evolutionary process, leading to the progressive defunctionalization and disappearance of vibrissae in primates.
Proceedings of the National Academy of Sciences of the United States of America
Chen, L;Li, Y;Song, Z;Xue, S;Liu, F;Chang, X;Wu, Y;Duan, X;Wu, H;
PMID: 35969743 | DOI: 10.1073/pnas.2202821119
Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Uehara, K;Koyanagi-Aoi, M;Koide, T;Itoh, T;Aoi, T;
PMID: 35245440 | DOI: 10.1016/j.stemcr.2022.02.002
Human gastric development has not been well studied. The generation of human pluripotent stem cell-derived gastric organoids (hGOs) comprising gastric marker-expressing epithelium without an apparent smooth muscle (SM) structure has been reported. We modified previously reported protocols to generate hGOs with muscularis mucosa (MM) from hiPSCs. Time course analyses revealed that epithelium development occurred prior to MM formation. Sonic hedgehog (SHH) and TGF-β1 were secreted by the epithelium. HH and TGF-β signal inhibition prevented subepithelial MM formation. A mechanical property of the substrate promoted SM differentiation around hGOs in the presence of TGF-β. TGF-β signaling was shown to influence the HH signaling and mechanical properties. In addition, clinical specimen findings suggested the involvement of TGF-β signaling in MM formation in recovering gastric ulcers. HH and TGF-β signaling from the epithelium to the stroma and the mechanical properties of the subepithelial environment may influence the emergence of MM in human stomach tissue.
Proc Natl Acad Sci U S A. 2018 Dec 12.
Mathieu M, Drelon C, Rodriguez S, Tabbal H, Septier A, Damon-Soubeyrand C, Dumontet T, Berthon A, Sahut-Barnola I, Djari C, Batisse-Lignier M, Pointud JC, Richard D, Kerdivel G, Calméjane MA, Boeva V, Tauveron I, Lefrançois-Martinez AM, Martinez A, Val P.
PMID: 30541888 | DOI: 10.1073/pnas.1809185115
Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.
Giacomelli, M;Monti, M;Pezzola, DC;Lonardi, S;Bugatti, M;Missale, F;Cioncada, R;Melocchi, L;Giustini, V;Villanacci, V;Baronchelli, C;Manenti, S;Imberti, L;Giurisato, E;Vermi, W;
PMID: 37370706 | DOI: 10.3390/cancers15123097
Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.