Evidence for residual SARS-CoV-2 in glioblastoma tissue of a convalescent patient
Lei, J;Liu, Y;Xie, T;Yao, G;Wang, G;Diao, B;Song, J;
PMID: 33994523 | DOI: 10.1097/WNR.0000000000001654
Since coronavirus disease 2019 (COVID-19) swept all over the world, several studies have shown the susceptibility of a patient with cancer to COVID-19. In this case, the removed glioblastoma multiforme (GBM)-adjacent (GBM-A), GBM-peritumor and GBM-central (GBM-C) tissues from a convalescent patient of COVID-19, who also suffered from glioblastoma meanwhile, together with GBM-A and GBM tissues from a patient without COVID-19 history as negative controls, were used for RNA ISH, electron microscopy observing and immunohistochemical staining of ACE2 and the virus antigen (N protein). The results of RNA ISH, electron microscopy observing showed that SARS-CoV-2 directly infects some cells within human GBM tissues and SARS-CoV-2 in GBM-C tissue still exists even when it is cleared elsewhere. Immunohistochemical staining of ACE2 and N protein showed that the expressions of ACE2 are significantly higher in specimens, including GBM-C tissue from COVID-19 patient than other types of tissue. The unique phenomenon suggests that the surgical protection level should be upgraded even if the patient is in a convalescent period and the pharyngeal swab tests show negative results. Furthermore, more attention should be paid to confirm whether the shelter-like phenomenon happens in other malignancies due to the similar microenvironment and high expression of ACE2 in some malignancies.
Terem, A;Fatal, Y;Peretz-Rivlin, N;Turm, H;Koren, SS;Kitsberg, D;Ashwal-Fluss, R;Mukherjee, D;Habib, N;Citri, A;
PMID: 37379841 | DOI: 10.1016/j.cub.2023.05.065
The synthetic opioid fentanyl is a major contributor to the current opioid addiction crisis. We report that claustral neurons projecting to the frontal cortex limit oral fentanyl self-administration in mice. We found that fentanyl transcriptionally activates frontal-projecting claustrum neurons. These neurons also exhibit a unique suppression of Ca2+ activity upon initiation of bouts of fentanyl consumption. Optogenetic stimulation of frontal-projecting claustral neurons, intervening in this suppression, decreased bouts of fentanyl consumption. In contrast, constitutive inhibition of frontal-projecting claustral neurons in the context of a novel, group-housed self-administration procedure increased fentanyl bout consumption. This same manipulation also sensitized conditioned-place preference for fentanyl and enhanced the representation of fentanyl experience in the frontal cortex. Together, our results indicate that claustrum neurons exert inhibitory control over frontal cortical neurons to restrict oral fentanyl intake. Upregulation of activity in the claustro-frontal projection may be a promising strategy for reducing human opioid addiction.
Journal of neuropathology and experimental neurology
Normandin, E;Valizadeh, N;Rudmann, EA;Uddin, R;Dobbins, ST;MacInnis, BL;Padera, RF;Siddle, KJ;Lemieux, JE;Sabeti, PC;Mukerji, SS;Solomon, IH;
PMID: 36847705 | DOI: 10.1093/jnen/nlad015
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages). Coronavirus disease 2019 (COVID-19) has been associated with neurological sequelae including loss of taste/smell, headache, encephalopathy, and stroke, yet little is known about the impact of viral strain on neuropathogenesis. Detailed postmortem brain evaluations were performed for 22 patients from Massachusetts, including 12 who died following infection with Delta variant and 5 with Omicron variant, compared to 5 patients who died earlier in the pandemic. Diffuse hypoxic injury, occasional microinfarcts and hemorrhage, perivascular fibrinogen, and rare lymphocytes were observed across the 3 groups. SARS-CoV-2 protein and RNA were not detected in any brain samples by immunohistochemistry, in situ hybridization, or real-time quantitative PCR. These results, although preliminary, demonstrate that, among a subset of severely ill patients, similar neuropathological features are present in Delta, Omicron, and non-Delta/non-Omicron variant patients, suggesting that SARS-CoV-2 variants are likely to affect the brain by common neuropathogenic mechanisms.
Gynecologic and obstetric investigation
Shen, WB;Turan, S;Wang, B;Cojocaru, L;Harman, C;Logue, J;Reece, EA;Frieman, MB;Yang, P;
PMID: 35526532 | DOI: 10.1159/000524905
Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif.To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case that unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 hours, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes.We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.S. Karger AG, Basel.
Intravenous, Intratracheal, and Intranasal Inoculation of Swine with SARS-CoV-2
Buckley, A;Falkenberg, S;Martins, M;Laverack, M;Palmer, MV;Lager, K;Diel, DG;
PMID: 34452371 | DOI: 10.3390/v13081506
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.
Fetterly TL, Basu A, Nabit BP, Awad E, Williford KM, Centanni SW, Matthews RT, Silberman Y, Winder DG.
PMID: 30478032 | DOI: 10.1523/JNEUROSCI.1035-18.2018
Stress contributes to numerous psychiatric disorders. CRF signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, utilizing Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the co-expression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENTStress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well-tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent co-expression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between NE and CRF, and point to an action by which guanfacine may reduce negative affective responses.
The Skin as a critical window in unveiling the pathophysiologic principles of COVID-19
Magro, C;Nuovo, G;Mulvey, J;Laurence, J;Harp, J;Neil Crowson, A;
| DOI: 10.1016/j.clindermatol.2021.07.001
The severe acute respiratory distress syndrome-associated coronavirus-2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a single-stranded RNA virus whose sequence is known. COVID-19 is associated with a heterogeneous clinical phenotype ranging from asymptomatic to fatal disease. It appears that access to nasopharyngeal respiratory epithelia expressing angiotensin-converting enzyme (ACE) 2, the receptor for SARS CoV-2, is followed by viral replication in the pulmonary alveolar septal capillary bed. We have shown in prior studies that incomplete viral particles, termed pseudovirions, dock to deep subcutaneous and other vascular beds potentially contributing to the prothrombotic state and systemic complement activation that characterizes severe and critical COVID-19. A variety of skin rashes have been described in the setting of SARS-CoV-2 infection and more recently, following COVID-19 vaccination. The vaccines deliver a laboratory synthesized mRNA that encodes a protein that is identical to the spike glycoprotein of SARS-COV-2 allowing the production of immunogenic spike glycoprotein that will then elicit T cell and B cell adaptive immune responses. In this paper we review an array of cutaneous manifestations of COVID-19 that provide an opportunity to study critical pathophysiologic mechanisms that underlie all clinical facets of COVID-19 ranging from asymptomatic/mild to severe and critical COVID-19. We classify cutaneous COVID-19 according to underlying pathophysiologic principles. In this regard we propose two main pathways: 1) complement mediated thrombotic vascular injury syndromes deploying the alternative and mannan binding lectin pathways in the setting of severe and critical COVID-19 and 2) the robust T cell and type I interferon driven inflammatory and humoral driven immune complex mediated vasculitic cutaneous reactions seen with mild and moderate COVID-19. Novel data on cutaneous vaccine reactions are presented that manifest a clinical and morphologic parallel with similar eruptions seen in patients suffering from mild and moderate COVID-19 and in most cases represent systemic eczematoid hypersensitivity reactions to a putative vaccine based antigen. Finally, we show for the first time the localization of human synthesized spike glycoprotein following the COVID-19 vaccine to the cutaneous and subcutaneous vasculature confirming the ability of SARS CoV-2 spike glycoprotein to bind endothelium in the absence of intact virus.
The American journal of pathology
Nida Sen, H;Vannella, KM;Wang, Y;Chung, JY;Kodati, S;Ramelli, SC;Lee, JW;Perez, P;Stein, SR;Grazioli, A;Dickey, JM;Ylaya, K;Singh, M;Yinda, KC;Platt, A;Ramos-Benitez, MJ;Zerbe, C;Munster, VJ;de Wit, E;Warner, BM;Herr, DL;Rabin, J;Saharia, KK;NIH COVID-19 Autopsy Consortium, ;Kleiner, DE;Hewitt, SM;Chan, CC;Chertow, DS;
PMID: 36963628 | DOI: 10.1016/j.ajpath.2023.02.016
Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. For this current study, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. From the other four patients, sections of the droplet digital PCR-positive eyes were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, within ocular tissues, a range of common histopathologic alterations were identified, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.
Knott, D;Fell, R;Potter, JA;Yuille, S;Salguero, FJ;Graham, VA;Hewson, R;Howat, D;Dowall, SD;
PMID: 36992434 | DOI: 10.3390/v15030725
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and its expansion to a worldwide pandemic resulted in efforts to assess and develop interventions to reduce the disease burden. Despite the introduction of vaccine programmes against SARS-CoV-2, global incidence levels in early 2022 remained high, demonstrating a need for the development of physiologically relevant models, which are essential for the identification of alternative antiviral strategies. The hamster model of SARS-CoV-2 infection has been widely adopted due to similarities with humans in terms of host cell entry mechanism (via ACE2), and aspects of symptomology and virus shedding. We have previously described a natural transmission hamster model that better represents the natural course of infection. In the present study, we have conducted further testing of the model using the first-in-class antiviral Neumifil, which has previously shown promise against SARS-CoV-2 after a direct intranasal challenge. Neumifil is an intranasally delivered carbohydrate-binding module (CBM) which reduces the binding of viruses to their cellular receptor. By targeting the host cell, Neumifil has the potential to provide broad protection against multiple pathogens and variants. This study demonstrates that using a combination of a prophylactic and therapeutic delivery of Neumifil significantly reduces the severity of clinical signs in animals infected via a natural route of transmission and indicates a reduction of viral loads in the upper respiratory tract. Further refinements of the model are required in order to ensure the adequate transmission of the virus. However, our results provide additional data to the evidence base of Neumifil efficacy against respiratory virus infection and demonstrate that the transmission model is a potentially valuable tool for testing antiviral compounds against SARS-CoV-2.
Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, Whitaker LR, McPherson KB, Bossert JM, Shaham Y, Hope BT.
PMID: 27335401 | DOI: 10.1523/JNEUROSCI.0140-16.2016
Abstract
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area.
SIGNIFICANCE STATEMENT:
A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area.
Golden SA, Jin M, Heins C, Venniro M, Michaelides M, Shaham Y.
PMID: PMID: 30655356 | DOI: DOI:10.1523/JNEUROSCI.2409-18.2019
We recently developed a mouse model of appetitive operant aggression and reported that adult male outbred CD-1 mice lever-press for the opportunity to attack subordinate male mice and relapse to aggression seeking during abstinence. Here we studied the role of nucleus accumbens (NAc) dopamine D1- and D2-receptor (Drd1 and Drd2) expressing neurons in aggression self-administration and aggression seeking. We trained CD-1 mice to self-administer intruders (9 d, 12 trials/d) and tested them for aggression self-administration and aggression seeking on abstinence day 1. We used immunohistochemistry and in situ hybridization to measure the neuronal activity marker Fos in the NAc, and cell-type specific colocalization of Fos with Drd1- and Drd2-expressing neurons. To test the causal role of Drd1- and Drd2-expressing neurons, we validated a transgenic hybrid breeding strategy crossing inbred Drd1-Cre and Drd2-Cre transgenic mice with outbred CD-1 mice and used cell-type specific Cre-DREADD (hM4Di) to inhibit NAc Drd1- and Drd2-expressing neuron activity. We found that that aggression self-administration and aggression seeking induced higher Fos expression in NAc shell than in core, that Fos colocalized with Drd1 and Drd2 in both subregions, and that chemogenetic inhibition of Drd1-, but not Drd2-, expressing neurons decreased aggression self-administration and aggression seeking. Results indicate a cell-type specific role of Drd1-expressing neurons that is critical for both aggression self-administration and aggression seeking. Our study also validates a simple breeding strategy between outbred CD-1 mice and inbred C57-based Cre lines that can be used to study cell-type and circuit mechanisms of aggression reward and relapse.SIGNIFICANCE STATEMENTAggression is often comorbid with neuropsychiatric diseases, including drug addiction. One form, appetitive aggression, exhibits symptomatology that mimics that of drug addiction and is hypothesized to be due to dysregulation of addiction-related reward circuits. However, our mechanistic understanding of the circuitry modulating appetitive operant aggression is limited. Here we use a novel mouse model of aggression self-administration and relapse, in combination with immunohistochemistry, in situ hybridization, and chemogenetic manipulations to examine how cell-types in the nucleus accumbens are recruited for, and control, operant aggression self-administration and aggression seeking on abstinence day 1. We found that one population, dopamine receptor 1-expressing neurons, act as a critical modulator of operant aggression reward and aggression seeking.
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Santos, A;Sauer, M;Neil, AJ;Solomon, IH;Hornick, JL;Roberts, DJ;Quade, BJ;Parra-Herran, C;
PMID: 35361888 | DOI: 10.1038/s41379-022-01061-3
Current public health initiatives to contain the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic focus on expanding vaccination efforts to include vulnerable populations such as pregnant people. Vaccines using messenger ribonucleic acid (mRNA) technology rely on translation by immune cells, primarily at the injection site. Hesitancy remains among the general population regarding the safety of mRNA vaccines during gestation, and it remains unknown whether the SARS-CoV-2 Spike protein (the product of mRNA vaccines available) accumulates in the placenta after vaccination. Objective: To determine whether Spike protein translation and accumulation occurs in placental tissue in the context of recent mRNA SARC-CoV-2 vaccination during pregnancy. We identified 48 patients receiving one or two doses of mRNA SARS-CoV-2 vaccine during gestation and used immunohistochemistry against SARS-CoV-2 Spike protein in formalin-fixed, paraffin-embedded placental tissue. One placenta, positive for SARS-CoV-2 RNA by in situ hybridization (ISH) was used as positive control. Seven term placentas collected prior to the emergence of SARS-CoV-2 served as negative controls. Eighty one percent of patients in the study group underwent third-trimester delivery; remaining had a first-trimester spontaneous abortion or elective second-trimester termination. Patients received two (52%) or one (48%) vaccine doses during pregnancy, with a median interval between latest dose and delivery of 13 days (range 2-79 days). Most (63%) cases had their latest dose within 15 days prior to delivery. All the placentas in the study and negative control groups were negative for SARS-CoV-2 immunohistochemistry. Six study cases with short vaccine-delivery intervals (2-7 days) were subjected to SARS-CoV-2 ISH and were negative. Our findings suggest that mRNA vaccines do not reach significant concentrations in the placenta given the absence of definitive SARS-CoV-2 Spike protein accumulation in placental tissue. This observation provides evidence supporting the safety of mRNA vaccines to the placental-fetal unit.