Mou, TM;Lane, MV;Ireland, DDC;Verthelyi, D;Tonelli, LH;Clark, SM;
PMID: 35995342 | DOI: 10.1016/j.nbd.2022.105840
An early inflammatory insult is the most recognized risk factor associated with neurodevelopmental psychiatric disorders, even more so than genetic variants. Notably, complement component 4 (C4), a molecule involved in inflammatory responses, has been strongly associated with schizophrenia (SZ) and its role in other neurodevelopmental disorders, such as autism (ASD), is an area of active investigation. However, while C4 in SZ has been implicated in the context of synaptic pruning, little is known about its neuroinflammatory role. The subventricular zone (SVZ) is a region heavily involved in neurodevelopment and neuroimmune interactions through the lifespan; thus, it is a region wherein C4 may play a vital role in disease pathology. Using in situ hybridization with radioactive riboprobes and RNAscope, we identified robust astrocytic expression of C4 in the SVZ and in the septum pellucidum. C4 was also expressed in ependyma, neurons, and Ki67+ progenitor cells. Examination of mRNA levels showed elevated C4 in both ASD and SZ, with higher expression in SZ compared to controls. Targeted transcriptomic analysis of inflammatory pathways revealed a strong association of complement system genes with SZ, and to a lesser extent, ASD, as well as generalized immune dysregulation without a strong association with known infectious pathways. Analysis of differentially expressed genes (DEGs) showed that ASD DEGs were enriched in adaptive immune system functions such as Th cell differentiation, while SZ DEGs were enriched in innate immune system functions, including NF-κB and toll like receptor signaling. Moreover, the number of Ki67+ cells was significantly higher in ASD compared to SZ and controls. Taken together, these results support a role for C4 into inflammatory-neuroimmune dysregulation observed in SZ and ASD pathology.
Key role for hypothalamic interleukin-6 in food-motivated behavior and body weight regulation
López-Ferreras, L;Longo, F;Richard, J;Eerola, K;Shevchouk, O;Tuzinovic, M;Skibicka, K;
| DOI: 10.1016/j.psyneuen.2021.105284
The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior.
Shi MM, Fan KM, Qiao YN, Xu JH, Qiu LJ, Li X, Liu Y, Qian ZQ, Wei CL, Han J, Fan J, Tian YF, Ren W, Liu ZQ.
PMID: 31142818 | DOI: 10.1038/s41380-019-0435-z
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAAreceptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Griffiths PR, Lolait SJ, Bijabhai A, O'Carroll-Lolait A, Paton JFR, O'Carroll AM
PMID: 32315363 | DOI: 10.1371/journal.pone.0231844
The vascular organ of the lamina terminalis, subfornical organ (SFO), and area postrema comprise the sensory circumventricular organs (CVO) which are central structures that lie outside the blood brain barrier and are thought to provide an interface between peripherally circulating signals and the brain through their projections to central autonomic structures. The SFO expresses mRNA for the G protein-coupled apelin receptor (APJ, gene name aplnr) and exogenous microinjection of the neuropeptide apelin (apln) to the SFO elicits a depressor effect. Here we investigated the expression and cellular distribution of aplnr, apln and the recently described ligand apela (apela) in the CVOs and investigated whether differences in the levels of expression of apelinergic gene transcripts in these regions might underlie the chronic elevated blood pressure seen in hypertension. We carried out multiplex in situ hybridization histochemistry on CVO tissue sections from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. Confocal immunofluorescent images indicated strong aplnr expression, with lower levels of apln and modest apela expression, in the CVOs of both WKY rats and SHRs, in both neurons and glia. The expression level of aplnr transcripts was increased in the SFO of SHRs compared to WKY rats. Our data may highlight a potential dysfunction in the communication between CVOs and downstream signalling pathways in SHRs, which may contribute to its different phenotype/s
Pook C, Ahrens JM, Clagett-Dame M
PMID: 32081718 | DOI: 10.1016/j.gep.2020.119099
Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR). These studies support full-length Nav2 transcript as the predominant form in the wild-type mouse CNS. The developing cortex, hippocampus, thalamus, olfactory bulb, and granule cells (GC) within the cerebellum show the highest expression, with a similar staining pattern using either the 5'Nav2 or 3'Nav2 probe. Nav2 is expressed in GC precursors migrating over the cerebellar primordium as well as in the postmitotic premigratory cells of the external granule cell layer (EGL). It is expressed in the cornu ammonis (CA) and dentate gyrus (DG) throughout hippocampal development. In situ hybridization was combined with immunohistochemistry for Ki67, CTIP2 and Nissl staining to follow Nav2 transcript location during cortical development, where it is observed in neuroepithelial cells exiting the germinal compartments, as well as later in the cortical plate (CP) and developing cortical layers. The highest levels of Nav2 in all brain regions studied are observed in late gestation and early postnatal life which coincides with times when neurons are migrating and differentiating. A hypomorphic mouse that lacks the full-length transcript but expresses shorter transcript shows little staining in the CNS with either probe set except at the base of the cerebellum, where a shorter Nav2 transcript is detected. Using dual fluorescent probe in situ hybridization studies, these cells are identified as oligodendrocytes and are detected using both Olig1 and the 3'Nav2 probe. The identification of full-length Nav2 as the primary transcript in numerous brain regions suggests NAV2 could play a role in CNS development beyond that of its well-established role in the cerebellum
Porniece Kumar, M;Cremer, AL;Klemm, P;Steuernagel, L;Sundaram, S;Jais, A;Hausen, AC;Tao, J;Secher, A;Pedersen, TÅ;Schwaninger, M;Wunderlich, FT;Lowell, BB;Backes, H;Brüning, JC;
PMID: 34931084 | DOI: 10.1038/s42255-021-00499-0
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Choi, BR;Johnson, KR;Maric, D;McGavern, DB;
PMID: 37248420 | DOI: 10.1038/s41590-023-01521-1
Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.
Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, Zhou Y, Cui W, Zhu J, Qiao Z, Maoying Q, Chu Y, Zhou H, Wang Y, Mi W.
PMID: 31087583 | DOI: 10.1002/glia.23639
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Velazquez-Sanchez, C;Muresan, L;Marti-Prats, L;Belin, D;
PMID: 36635597 | DOI: 10.1038/s41386-022-01522-y
Some compulsive disorders have been considered to stem from the loss of control over coping strategies, such as displacement. However, the cellular mechanisms involved in the acquisition of coping behaviours and their subsequent compulsive manifestation in vulnerable individuals have not been elucidated. Considering the role of the locus coeruleus (LC) noradrenaline-dependent system in stress and related excessive behaviours, we hypothesised that neuroplastic changes in the LC may be associated with the acquisition of an adjunctive polydipsic water drinking, a prototypical displacement behaviour, and the ensuing development of compulsion in vulnerable individuals. Thus, male Sprague Dawley rats were characterised for their tendency, or not, to develop compulsive polydipsic drinking in a schedule-induced polydipsia (SIP) procedure before their fresh brains were harvested. A new quantification tool for RNAscope assays revealed that the development of compulsive adjunctive behaviour was associated with a low mRNA copy number of the plasticity marker Arc in the LC which appeared to be driven by specific adaptations in an ensemble of tyrosine hydroxylase (TH)+, zif268- neurons. This ensemble was specifically engaged by the expression of compulsive adjunctive behaviour, not by stress, because its functional recruitment was not observed in individuals that no longer had access to the water bottle before sacrifice, while it consistently correlated with the levels of polydipsic water drinking only when it had become compulsive. Together these findings suggest that downregulation of Arc mRNA levels in a population of a TH+/zif268- LC neurons represents a signature of the tendency to develop compulsive coping behaviours.
Ribeiro, M;Ayupe, AC;Beckedorff, FC;Levay, K;Rodriguez, S;Tsoulfas, P;Lee, JK;Nascimento-Dos-Santos, G;Park, KK;
PMID: 35738417 | DOI: 10.1016/j.expneurol.2022.114147
Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
Zhu H, Meissner LE, Byrnes C, Tuymetova G, Tifft CJ, Proia RL
PMID: 32179479 | DOI: 10.1016/j.isci.2020.100957
The SUSD4 (Sushi domain-containing protein 4) gene encodes a complement inhibitor that is frequently deleted in 1q41q42 microdeletion syndrome, a multisystem congenital disorder that includes neurodevelopmental abnormalities. To understand SUSD4's role in the mammalian nervous system, we analyzed Susd4 knockout (KO) mice. Susd4 KO mice exhibited significant defects in motor performance and significantly higher levels of anxiety-like behaviors. Susd4 KO brain had abnormal "hairy" basket cells surrounding Purkinje neurons within the cerebellum and significantly reduced dendritic spine density in hippocampal pyramidal neurons. Neurons and oligodendrocyte lineage cells of wild-type mice were found to express Susd4 mRNA. Protein expression of the complement component C1q was increased in the brains of Susd4 KO mice. Our data indicate that SUSD4 plays an important role in neuronal functions, possibly via the complement pathway, and that SUSD4 deletion may contribute to the nervous system abnormalities in patients with 1q41q42 deletions
Aloi, MS;Thompson, SJ;Quartapella, N;Noebels, JL;
PMID: 36417872 | DOI: 10.1016/j.celrep.2022.111696
Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Slc7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events.