Rizzi G, Coban M, Tan KR.
PMID: 31113944 | DOI: 10.1038/s41467-019-10223-y
The red nucleus (RN) is required for limb control, specifically fine motor coordination. There is some evidence for a role of the RN in reaching and grasping, mainly from lesion studies, but results so far have been inconsistent. In addition, the role of RN neurons in such learned motor functions at the level of synaptic transmission has been largely neglected. Here, we show that Vglut2-expressing RN neurons undergo plastic events and encode the optimization of fine movements. RN light-ablation severely impairs reaching and grasping functions while sparing general locomotion. We identify a neuronal population co-expressing Vglut2, PV and C1QL2, which specifically undergoes training-dependent plasticity. Selective chemo-genetic inhibition of these neurons perturbs reaching and grasping skills. Our study highlights the role of the Vglut2-positive rubral population in complex fine motor tasks, with its related plasticity representing an important starting point for the investigation of mechanistic substrates of fine motor coordination training.
Chen, Z;Chen, G;Zhong, J;Jiang, S;Lai, S;Xu, H;Deng, X;Li, F;Lu, S;Zhou, K;Li, C;Liu, Z;Zhang, X;Zhu, Y;
PMID: 36028570 | DOI: 10.1038/s41380-022-01742-0
Feeding behavior is regulated by both the homeostatic needs of the body and hedonic values of the food. Easy access to palatable energy-dense foods and the consequent obesity epidemic stress the urgent need for a better understanding of neural circuits that regulate hedonic feeding. Here, we report that neurotensin-positive neurons in the lateral septum (LSNts) play a crucial role in regulating hedonic feeding. Silencing LSNts specifically promotes feeding of palatable food, whereas activation of LSNts suppresses overall feeding. LSNts neurons project to the tuberal nucleus (TU) via GABA signaling to regulate hedonic feeding, while the neurotensin signal from LSNts→the supramammillary nucleus (SUM) is sufficient to suppress overall feeding. In vivo calcium imaging and optogenetic manipulation reveal two populations of LSNts neurons that are activated and inhibited during feeding, which contribute to food seeking and consumption, respectively. Chronic activation of LSNts or LSNts→TU is sufficient to reduce high-fat diet-induced obesity. Our findings suggest that LSNts→TU is a key pathway in regulating hedonic feeding.
Baser A, Skabkin M, Kleber S, Dang Y, Gülcüler Balta GS, Kalamakis G, Göpferich M, Ibañez DC, Schefzik R, Lopez AS, Bobadilla EL, Schultz C, Fischer B, Martin-Villalba A.
PMID: 30700908 | DOI: 10.1038/s41586-019-0888-x
Whether post-transcriptional regulation of gene expression controls differentiation of stem cells for tissue renewal remains unknown. Quiescent stem cells exhibit a low level of protein synthesis1, which is key to maintaining the pool of fully functional stem cells, not only in the brain but also in the bone marrow and hair follicles2-6. Neurons also maintain a subset of messenger RNAs in a translationally silent state, which react 'on demand' to intracellular and extracellular signals. This uncoupling of general availability of mRNA from translation into protein facilitates immediate responses to environmental changes and avoids excess production of proteins, which is the most energy-consuming process within the cell. However, when post-transcriptional regulation is acquired and how protein synthesis changes along the different steps of maturation are not known. Here we show that protein synthesis undergoes highly dynamic changes when stem cells differentiate to neurons in vivo. Examination of individual transcripts using RiboTag mouse models reveals that whereas stem cells translate abundant transcripts with little discrimination, translation becomes increasingly regulated with the onset of differentiation. The generation of neurogenic progeny involves translational repression of a subset of mRNAs, including mRNAs that encode the stem cell identity factors SOX2 and PAX6, and components of the translation machinery, which are enriched in a pyrimidine-rich motif. The decrease of mTORC1 activity as stem cells exit the cell cycle selectively blocks translation of these transcripts. Our results reveal a control mechanism by which the cell cycle is coupled to post-transcriptional repression of key stem cell identity factors, thereby promoting exit from stemness.
Qi, Y;Lee, NJ;Ip, CK;Enriquez, R;Tasan, R;Zhang, L;Herzog, H;
PMID: 35167990 | DOI: 10.1016/j.molmet.2022.101455
Aguti-related protein (AGRP) neurons in the arcuate nucleus of the hypothalamus (ARC), which co-express neuropeptide Y (NPY), are key regulators of feeding and energy homeostasis. However, the precise role NPY has within these neurons and the specific pathways that it control are still unclear. In this article, we aimed to determine what aspects of feeding behaviour and energy homeostasis are controlled by NPY originating from AGRP neurons and which Y-receptor pathways are utilised to fulfil this function.Novel conditional Agrpcre/+;Npylox/lox knockout mice were generated and comprehensively phenotyped, both under standard chow as well as high-fat-diet conditions. Designer receptor exclusively activated by designer drugs (DREADD) technology was used to assess the altered responses on feeding and energy homeostasis control in the absence of NPY in these neurons. Rescue experiments utilising Npy1r- and Npy2r-selective NPY ligands were performed to assess which component of the energy homeostasis control is dependent by which specific Y-receptor pathway.We show that the specific deletion of Npy only in AGRP neurons leads to a paradoxical mild obese phenotype associated with reduced locomotion and energy expenditure and increased feeding and Respiratory Quotient (RQ) that remain elevated under a positive energy balance. The activation of Npy-deficient AGRP neurons via DREADD's is still able to drive feeding, yet with a delayed onset. Additionally, Clozapine-N-oxide (CNO) treatment reduces locomotion without impacting on energy expenditure. Rescue experiments re-introducing Npy1r- and Npy2r-selective NPY ligands revealed that the increased feeding and RQ are mostly driven by Npy1r, whereas energy expenditure and locomotion are controlled by Npy2r signalling.Together, these results demonstrate that NPY originating from AGRP neurons is not only critical to initiate but also for continuously driving feeding, and we for the first time identify which Y-receptor controls which pathway.
The Journal of comparative neurology
Karthik, S;Huang, D;Delgado, Y;Laing, JJ;Peltekian, L;Iverson, GN;Grady, F;Miller, RL;McCann, CM;Fritzsch, B;Iskusnykh, IY;Chizhikov, VV;Geerling, JC;
PMID: 35134251 | DOI: 10.1002/cne.25307
Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region. Here, we present the foundation of a developmental-genetic ontology that classifies PB neurons based on their intrinsic, molecular features. By combining transcription factor labeling with Cre fate-mapping, we find that the PB is a blend of two, developmentally distinct macropopulations of glutamatergic neurons. Neurons in the first macropopulation express Lmx1b (and, to a lesser extent, Lmx1a) and are mutually exclusive with those in a second macropopulation, which derive from precursors expressing Atoh1. This second, Atoh1-derived macropopulation includes many Foxp2-expressing neurons, but Foxp2 also identifies a subset of Lmx1b-expressing neurons in the Kölliker-Fuse nucleus (KF) and a population of GABAergic neurons ventrolateral to the PB ("caudal KF"). Immediately ventral to the PB, Phox2b-expressing glutamatergic neurons (some coexpressing Lmx1b) occupy the KF, supratrigeminal nucleus, and reticular formation. We show that this molecular framework organizes subsidiary patterns of adult gene expression (including Satb2, Calca, Grp, and Pdyn) and predicts output projections to the amygdala (Lmx1b), hypothalamus (Atoh1), and hindbrain (Phox2b/Lmx1b). Using this molecular ontology to organize, interpret, and communicate PB-related information could accelerate the translation of experimental findings from animal models to human patients.
Hu, Y;Jiang, Y;Behnan, J;Ribeiro, MM;Kalantzi, C;Zhang, MD;Lou, D;Häring, M;Sharma, N;Okawa, S;Del Sol, A;Adameyko, I;Svensson, M;Persson, O;Ernfors, P;
PMID: 35675414 | DOI: 10.1126/sciadv.abm6340
Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.
Hua, SS;Ding, JJ;Sun, TC;Guo, C;Zhang, Y;Yu, ZH;Cao, YQ;Zhong, LH;Wu, Y;Guo, LY;Luo, JH;Cui, YH;Qiu, S;
PMID: 36842495 | DOI: 10.1016/j.biopsych.2023.02.013
The ventromedial prefrontal cortex (vmPFC) has been viewed as a locus to store and recall extinction memory. However, the synaptic and cellular mechanisms underlying this process remain elusive.We combined transgenic mice, electrophysiological recording, activity-dependent cell labeling, and chemogenetic manipulation to analyze the role of adaptor protein APPL1 in the vmPFC for fear extinction retrieval.We found that both constitutive and conditional APPL1 knockout decreases NMDA receptor (NMDAR) function in the vmPFC and impairs fear extinction retrieval. Moreover, APPL1 undergoes nuclear translocation during extinction retrieval. Blocking APPL1 nucleocytoplasmic translocation reduces NMDAR currents and disrupts extinction retrieval. We further identified a prefrontal neuronal ensemble that is both necessary and sufficient for the storage of extinction memory. Inducible APPL1 knockout in this ensemble abolishes NMDAR-dependent synaptic potentiation and disrupts extinction retrieval, while simultaneously chemogenetic activation of this ensemble rescues the impaired behaviors.Therefore, our results indicate that a prefrontal neuronal ensemble stores extinction memory, and APPL1 signaling supports these neurons to retrieve extinction memory via controlling NMDAR-dependent potentiation.
ACS chemical neuroscience
Dai, D;Li, W;Chen, A;Gao, XF;Xiong, L;
PMID: 35412792 | DOI: 10.1021/acschemneuro.2c00067
The lateral habenula (LHb) is a tiny structure that acts as a hub, relaying signals from the limbic forebrain structures and basal ganglia to the brainstem modulatory area. Facilitated by updated knowledge and more precise manipulation of circuits, the progress in figuring out the neural circuits and functions of the LHb has increased dramatically over the past decade. Importantly, LHb is found to play an integrative role and has profound effects on a variety of behaviors associated with pain, including depression-like and anxiety-like behaviors, antireward or aversion, aggression, defensive behavior, and substance use disorder. Thus, LHb is a potential target for improving pain management and related disorders. In this review, we focused on the functions, related circuits, and neurotransmissions of the LHb in pain processing and related behaviors. A comprehensive understanding of the relationship between the LHb and pain will help to find new pain treatments.
A neural circuit for excessive feeding driven by environmental context in mice
Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9
Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Frontiers in neuroendocrinology
Beekly, BG;Rupp, A;Burgess, CR;Elias, CF;
PMID: 37149229 | DOI: 10.1016/j.yfrne.2023.101069
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
Bulstrode, H;Girdler, GC;Gracia, T;Aivazidis, A;Moutsopoulos, I;Young, AMH;Hancock, J;He, X;Ridley, K;Xu, Z;Stockley, JH;Finlay, J;Hallou, C;Fajardo, T;Fountain, DM;van Dongen, S;Joannides, A;Morris, R;Mair, R;Watts, C;Santarius, T;Price, SJ;Hutchinson, PJA;Hodson, EJ;Pollard, SM;Mohorianu, I;Barker, RA;Sweeney, TR;Bayraktar, O;Gergely, F;Rowitch, DH;
PMID: 36174572 | DOI: 10.1016/j.neuron.2022.09.002
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep
Zhang, Z;Beier, C;Weil, T;Hattar, S;
PMID: 34433830 | DOI: 10.1038/s41467-021-25378-w
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep.