ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Neuropathol Exp Neurol.
2018 Jan 13
Chimelli L, Pone SM, Avvad-Portari E, Farias Meira Vasconcelos Z, Araújo Zin A, Prado Cunha D, Raposo Thompson N, Lopes Moreira ME, Wiley CA, Vinicius da Silva Pone M.
PMID: 29346650 | DOI: 10.1093/jnen/nlx116
During the Zika epidemic in Brazil, a baby was born at term with microcephaly and arthrogryposis. The mother had Zika symptoms at 10 weeks of gestation. At 17 weeks, ultrasound showed cerebral malformation and ventriculomegaly. At 24 weeks, the amniotic fluid contained ZIKV RNA and at birth, placenta and maternal blood were also positive using RT-qPCR. At birth the baby urine contained ZIKV RNA, whereas CSF at birth and urine at 17 days did not. Seizures started at 6 days. EEG was abnormal and CT scan showed cerebral atrophy, calcifications, lissencephaly, ventriculomegaly, and cerebellar hypoplasia. Bacterial sepsis at 2 months was treated. A sudden increase in head circumference occurred at 4 months necessitating ventricle-peritoneal shunt placement. At 5 months, the infant died with sepsis due to bacterial meningitis. Neuropathological findings were as severe as some of those found in neonates who died soon after birth, including hydrocephalus, destructive lesions/calcification, gliosis, abnormal neuronal migration, dysmaturation of nerve cells, hypomyelination, loss of descending axons, and spinal motor neurons. ZIKV RNA was detected only in frozen brain tissue using RT-qPCR, but infected cells were not detected by in situ hybridization. Progressive gliosis and microgliosis in the midbrain may have contributed to aqueduct compression and subsequent hydrocephalus. The etiology of progressive disease after in utero infection is not clear and requires investigation.
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
2023 Jun 28
Menge, TD;Durgin, JS;Hrycaj, SM;Brent, AA;Patel, RM;Harms, PW;Fullen, DR;Chan, MP;Bresler, SC;
PMID: 37391171 | DOI: 10.1016/j.modpat.2023.100265
Am J Obstet Gynecol.
2018 Jun 11
Valentine GC, Seferovic MD, Fowler SW, Major AM, Gorchakov R, Berry R, Swennes AG, Murray KO, Suter MA, Aagaard KM.
PMID: 29902449 | DOI: 10.1016/j.ajog.2018.06.005
Abstract
BACKGROUND:
Vertical transmission of Zika virus (ZIKV) leads to infection of neuroprogenitor cells and destruction of brain parenchyma. Recent evidence suggests that the timing of infection as well as host factors may affect vertical transmission. As a result, congenital ZIKV infection may only become clinically apparent in the postnatal period.
OBJECTIVES:
We sought to develop an outbred mouse model of ZIKV vertical transmission to determine if the timing of gestational ZIKV exposure yields phenotypic differences at birth and through adolescence. We hypothesized that later gestational inoculations would only become apparent in adolescence.
METHODS:
To better recapitulate human exposures, timed pregnant Swiss-Webster dams (n=15) were subcutaneously inoculated with 1x104PFU of first passage contemporary ZIKV HN16 strain or a mock injection on embryonic day 4, 8, or 12 with bioactive anti-interferon alpha receptor antibody administered in days preceding and proceeding inoculation. The antibody was given to prevent the robust type I interferon signaling cascade that make mice inherently resistant to ZIKV infection. At birth and adolescence (6 weeks of age) offspring were assessed for growth, brain weight and biparietal head diameters (BPD), and ZIKV viral levels by RT-PCR or in situ hybridization.
RESULTS:
Pups of ZIKV-infected dams infected at e4 and e8 but not e12 were growth restricted (p<0.003). Brain weights were significantly smaller at birth (p=0.01) for e8 ZIKV-exposed offspring. At 6 weeks of age, biparietal diameters (BPD) were smaller for all ZIKV exposed males and females (p<0.05), with e8 exposed males smallest by BPD and growth restriction measurements (weight >2 SD, p=0.0007). All pups and adolescent mice were assessed for ZIKV infection by RT-PCR. Analysis of all underweight pups reveled one to be positive for neuronal ZIKV infection by in situ hybridization, while a second moribund animal was diffusely positive at 8 days of age by ZIKV infectivity throughout the brain, kidneys and intestine.
CONCLUSION:
These findings demonstrate that postnatal effects of infection occurring at single time points continue to be detrimental to offspring in the postnatal period in a subset of littermates and subject to a window of gestational susceptibility coinciding with placentation. This model recapitulates frequently encountered clinical scenarios in non-endemic regions, including the majority of the U.S., where travel related exposure occurs in short and well-defined windows of gestation. Our low rate of infection and relatively rare evidence of congenital Zika syndrome parallels human population-based data.
SSRN Electronic Journal
2022 Mar 12
Chometton, S;Jung, A;Mai, L;Dal Bon, T;Ramirez, A;Pittman, D;Schier, L;
| DOI: 10.2139/ssrn.4049203
PLoS Pathog.
2017 Mar 09
Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ, Kreklywich C, DeFilippis VR, Denton M, Smith PP, Messer WB, Colgin LM, Ducore RM, Grigsby PL, Hennebold JD, Swanson T, Legasse AW, Axthelm MK, MacAllister R, Wiley CA, Nelson JA, Streblow DN.
PMID: 28278237 | DOI: 10.1371/journal.ppat.1006219
Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.
Cell.
2018 Mar 28
Martinot AJ, Abbink P, Afacan O, Prohl AK, Bronson R, Hecht JL, Borducchi EN, Larocca RA, Peterson RL, Rinaldi W, Ferguson M, Didier PJ, Weiss D, Lewis MG, De La Barrera RA, Yang E, Warfield SK, Barouch DH.
PMID: 29606355 | DOI: 10.1016/j.cell.2018.03.019
The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.
Nature.
2018 Oct 08
Sánchez-Danés A, Larsimont JC, Liagre M, Muñoz-Couselo E, Lapouge G, Brisebarre A, Dubois C, Suppa M, Sukumaran V, Del Marmol V, Tabernero J, Blanpain C.
PMID: 30297799 | DOI: 10.1038/s41586-018-0603-3
Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoothened inhibitor, leads to BCC shrinkage in the majority of patients with BCC3, but the mechanism by which it mediates BCC regression is unknown. Here we used two genetically engineered mouse models of BCC4 to investigate the mechanisms by which inhibition of Smoothened mediates tumour regression. We found that vismodegib mediates BCC regression by inhibiting a hair follicle-like fate and promoting the differentiation of tumour cells. However, a small population of tumour cells persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting, slow-cycling tumour population expresses LGR5 and is characterized by active Wnt signalling. Combining Lgr5 lineage ablation or inhibition of Wnt signalling with vismodegib treatment leads to eradication of BCC. Our results show that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors is a clinically relevant strategy for overcoming tumour relapse in BCC.
Nat Commun. 2019 Jan 17;10(1):280.
2019 Jan 17
Caine EA, Scheaffer SM, Arora N, Zaitsev K, Artyomov MN, Coyne CB, Moley KH, Diamond MS.
PMID: PMID: 30655513 | DOI: DOI:10.1038/s41467-018-07993-2
Nature communications
2022 Nov 14
Kaucka, M;Joven Araus, A;Tesarova, M;Currie, JD;Boström, J;Kavkova, M;Petersen, J;Yao, Z;Bouchnita, A;Hellander, A;Zikmund, T;Elewa, A;Newton, PT;Fei, JF;Chagin, AS;Fried, K;Tanaka, EM;Kaiser, J;Simon, A;Adameyko, I;
PMID: 36376278 | DOI: 10.1038/s41467-022-34266-w
Biomedicines
2022 Oct 20
Manti, PG;Darbellay, F;Leleu, M;Coughlan, AY;Moret, B;Cuennet, J;Droux, F;Stoudmann, M;Mancini, GF;Hautier, A;Sordet-Dessimoz, J;Vincent, SD;Testa, G;Cossu, G;Barrandon, Y;
PMID: 36289911 | DOI: 10.3390/biomedicines10102647
Proceedings of the National Academy of Sciences of the United States of America
2022 Aug 23
Chen, L;Li, Y;Song, Z;Xue, S;Liu, F;Chang, X;Wu, Y;Duan, X;Wu, H;
PMID: 35969743 | DOI: 10.1073/pnas.2202821119
Scientific reports
2022 Mar 30
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com