Lu, B;Chen, J;Xu, G;Grayson, TB;Jing, G;Jo, S;Shalev, A;
PMID: 35957590 | DOI: 10.1210/endocr/bqac133
Thioredoxin-interacting protein (Txnip) has emerged as a key factor in pancreatic beta cell biology and its upregulation by glucose and diabetes contributes to the impairment in functional beta cell mass and glucose homeostasis. In addition, beta cell deletion of Txnip protects against diabetes in different mouse models. However, while Txnip is ubiquitously expressed, its role in pancreatic alpha cells has remained elusive. We therefore now generated an alpha cell Txnip knockout (aTKO) mouse and assessed the effects on glucose homeostasis. While no significant changes were observed on regular chow, after a 30-week high-fat diet, aTKO animals showed improvement in glucose tolerance and lower blood glucose levels compared to their control littermates. Moreover, in the context of streptozotocin (STZ)-induced diabetes, aTKO mice showed significantly lower blood glucose levels compared to controls. While serum insulin levels were reduced in both control and aTKO mice, STZ-diabetes significantly increased glucagon levels in control mice, but this effect was blunted in aTKO mice. Moreover, glucagon secretion from aTKO islets was >2-fold lower than from control islets, while insulin secretion was unchanged in aTKO islets. At the same time, no change in alpha cell or beta cell numbers or mass was observed and glucagon and insulin expression and content were comparable in isolated islets from aTKO and control mice. Thus, together the current studies suggest that downregulation of alpha cell Txnip is associated with reduced glucagon secretion and that this may contribute to the glucose-lowering effects observed in diabetic aTKO mice.
Zheng, H;López-Ferreras, L;Krieger, JP;Fasul, S;Cea Salazar, V;Valderrama Pena, N;Skibicka, KP;Rinaman, L;
PMID: 36368622 | DOI: 10.1016/j.molmet.2022.101631
The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery.To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD.While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents.Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism.
Greenwood, MP;Greenwood, M;Bárez-López, S;Hawkins, JW;Short, K;Tatovic, D;Murphy, D;
PMID: 36773648 | DOI: 10.1016/j.molmet.2023.101692
The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release.We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland.We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis.In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.
Petersen, JE;Pedersen, MH;Dmytriyeva, O;Nellemose, E;Arora, T;Engelstoft, MS;Asher, WB;Javitch, JA;Schwartz, TW;Trauelsen, M;
PMID: 37348738 | DOI: 10.1016/j.molmet.2023.101757
Free fatty acid receptor 1 (FFAR1) is highly expressed in enteroendocrine cells of the small intestine and pancreatic beta cells, where FFAR1 agonists function as GLP-1 and insulin secretagogues, respectively. Most efficacious are so-called second-generation synthetic agonists such as AM5262, which, in contrast to endogenous long-chain fatty acids are able to signal through both IP3/Ca2+ and cAMP pathways. Whereas IP3 signaling is to be expected for the mainly Gq-coupled FFAR1, the mechanism behind FFAR1-induced cAMP accumulation remains unclear, although originally proposed to be Gs mediated.When stimulated with AM5262, we observe that FFAR1 can activate the majority of the Gα proteins, except - surprisingly - members of the Gs family. AM5262-induced FFAR1-mediated transcriptional activation through cAMP response element (CREB) was blocked by the specific Gq inhibitor, YM253890. Furthermore, in Gq-deficient cells no CREB signal was observed unless Gq or G11 was reintroduced by transfection. By qPCR we determined that adenylate cyclase 2 (Adcy2) was highly expressed and enriched relative to the nine other Adcys in pro-glucagon expressing enteroendocrine cells. Co-transfection with ADCY2 increased the FFAR1-induced cAMP response 4-5-fold in WT HEK293 cells, an effect fully inhibited by YM253890. Moreover, co-transfection with ADCY2 had no effect in Gq-deficient cells without reintroduction of either Gq or G11. Importantly, although both AM5262/FFAR1 and isoproterenol/β2 adrenergic receptor (β2AR) induced cAMP production was lost in Gs-deficient cells, only the β2AR response was rescued by Gs transfection, whereas co-transfection with ADCY2 was required to rescue the FFAR1 cAMP response. In situ hybridization demonstrated a high degree of co-expression of ADCY2 and FFAR1 in enteroendocrine cells throughout the intestine. Finally, in the enteroendocrine STC-1 and GLUTag cell lines AM5262-induced cAMP accumulation and GLP-1 secretion were both blocked by YM253890.Our results show that Gq signaling is responsible not only for the IP3/Ca2+ but also the cAMP response, which together are required for the highly efficacious hormone secretion induced by second-generation FFAR1 agonists - and that ADCY2 presumably mediates the Gq-driven cAMP response.
Proceedings of the National Academy of Sciences of the United States of America
Beumer, J;Bauzá-Martinez, J;Veth, TS;Geurts, V;Boot, C;Gilliam-Vigh, H;Poulsen, SS;Knop, FK;Wu, W;Clevers, H;
PMID: 36343264 | DOI: 10.1073/pnas.2212057119
Enteroendocrine cells (EECs) secrete hormones in response to ingested nutrients to control physiological processes such as appetite and insulin release. EEC hormones are synthesized as large proproteins that undergo proteolytic processing to generate bioactive peptides. Mutations in EEC-enriched proteases are associated with endocrinopathies. Due to the relative rarity of EECs and a paucity of in vitro models, intestinal prohormone processing remains challenging to assess. Here, human gut organoids in which EECs can efficiently be induced are subjected to CRISPR-Cas9-mediated modification of EEC-expressed endopeptidase and exopeptidase genes. We employ mass spectrometry-based analyses to monitor peptide processing and identify glucagon production in intestinal EECs, stimulated upon bone morphogenic protein (BMP) signaling. We map the substrates and products of major EECs endo- and exopeptidases. Our studies provide a comprehensive description of peptide hormones produced by human EECs and define the roles of specific proteases in their generation.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.