Uehara, K;Koyanagi-Aoi, M;Koide, T;Itoh, T;Aoi, T;
PMID: 35245440 | DOI: 10.1016/j.stemcr.2022.02.002
Human gastric development has not been well studied. The generation of human pluripotent stem cell-derived gastric organoids (hGOs) comprising gastric marker-expressing epithelium without an apparent smooth muscle (SM) structure has been reported. We modified previously reported protocols to generate hGOs with muscularis mucosa (MM) from hiPSCs. Time course analyses revealed that epithelium development occurred prior to MM formation. Sonic hedgehog (SHH) and TGF-β1 were secreted by the epithelium. HH and TGF-β signal inhibition prevented subepithelial MM formation. A mechanical property of the substrate promoted SM differentiation around hGOs in the presence of TGF-β. TGF-β signaling was shown to influence the HH signaling and mechanical properties. In addition, clinical specimen findings suggested the involvement of TGF-β signaling in MM formation in recovering gastric ulcers. HH and TGF-β signaling from the epithelium to the stroma and the mechanical properties of the subepithelial environment may influence the emergence of MM in human stomach tissue.
Patzek, S;Liu, Z;de la O, S;Chang, S;Byrnes, L;Zhang, X;Ornitz, D;Sneddon, J;
| DOI: 10.1016/j.isci.2023.106500
Pancreatic development requires spatially and temporally controlled expression of growth factors derived from mesenchyme. Here, we report that in mice the secreted factor Fgf9 is expressed principally by mesenchyme and then mesothelium during early development, then subsequently by both mesothelium and rare epithelial cells by E12.5 and onwards. Global knockout of the Fgf9 gene resulted in the reduction of pancreas and stomach size, as well as complete asplenia. The number of early Pdx1+ pancreatic progenitors was reduced at E10.5, as was proliferation of mesenchyme at E11.5. Although loss of Fgf9 did not interfere with differentiation of later epithelial lineages, single-cell RNA-Sequencing identified transcriptional programs perturbed upon loss of Fgf9 during pancreatic development, including loss of the transcription factor Barx1. Lastly, we identified conserved expression patterns of FGF9 and receptors in human fetal pancreas, suggesting that FGF9 expressed by pancreatic mesenchyme may similarly affect the development of the human pancreas.
Giacomelli, M;Monti, M;Pezzola, DC;Lonardi, S;Bugatti, M;Missale, F;Cioncada, R;Melocchi, L;Giustini, V;Villanacci, V;Baronchelli, C;Manenti, S;Imberti, L;Giurisato, E;Vermi, W;
PMID: 37370706 | DOI: 10.3390/cancers15123097
Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.
bioRxiv : the preprint server for biology
Chen, L;Dupre, A;Qiu, X;Pellon-Cardenas, O;Walton, KD;Wang, J;Perekatt, AO;Hu, W;Spence, JR;Verzi, MP;
PMID: 36711781 | DOI: 10.1101/2023.01.13.523825
The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.
Giacomelli, M;Monti, M;Pezzola, D;Lonardi, S;Bugatti, M;Missale, F;Cioncada, R;Melocchi, L;Giustini, V;Villanacci, V;Baronchelli, C;Manenti, S;Imberti, L;Giurisato, E;Vermi, W;
| DOI: 10.20944/preprints202305.0526.v1
CRCMSS/pMMR contain a significantly increased fraction of TREM2+ macrophages (TAMs) and CD66+ neutrophils (TANs) together with decrease of CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of myeloid and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells display an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCMSS/pMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCMSS/pMMR.
Herrera, JA;Dingle, LA;Montero Fernandez, MA;Venkateswaran, RV;Blaikley, JF;Lawless, C;Schwartz, MA;
PMID: 35852874 | DOI: 10.1172/jci.insight.156115
Usual Interstitial Pneumonia (UIP) is a histological pattern characteristic of Idiopathic Pulmonary Fibrosis (IPF). The UIP pattern is patchy with histologically normal lung adjacent to dense fibrotic tissue. At this interface, fibroblastic foci (FF) are present and are sites where myofibroblasts and extracellular matrix (ECM) accumulate. Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 fibrotic (UIP/IPF) specimens plus 6 non-fibrotic alveolar specimens as controls. The data were subject to qualitative and quantitative analysis, and histologically validated. We found that the fibrotic alveoli protein signature is defined by immune deregulation as the strongest category. The fibrotic mature scar classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared to non-fibrotic control. Furthermore, the FF is positive for both TGFB1 and TGFB3, whereas the aberrant basaloid cell lining of the FF is predominantly positive for TGFB2. In conclusion, spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of UIP/IPF tissue. These data revealed that the FF is the main site of collagen biosynthesis and that the adjacent alveoli are abnormal. This new and essential information will inform future mechanistic studies on fibrosis progression.
Yerly, L;Pich-Bavastro, C;Di Domizio, J;Wyss, T;Tissot-Renaud, S;Cangkrama, M;Gilliet, M;Werner, S;Kuonen, F;
PMID: 35986012 | DOI: 10.1038/s41467-022-32670-w
Tumors invade the surrounding tissues to progress, but the heterogeneity of cell types at the tumor-stroma interface and the complexity of their potential interactions hampered mechanistic insight required for efficient therapeutic targeting. Here, combining single-cell and spatial transcriptomics on human basal cell carcinomas, we define the cellular contributors of tumor progression. In the invasive niche, tumor cells exhibit a collective migration phenotype, characterized by the expression of cell-cell junction complexes. In physical proximity, we identify cancer-associated fibroblasts with extracellular matrix-remodeling features. Tumor cells strongly express the cytokine Activin A, and increased Activin A-induced gene signature is found in adjacent cancer-associated fibroblast subpopulations. Altogether, our data identify the cell populations and their transcriptional reprogramming contributing to the spatial organization of the basal cell carcinoma invasive niche. They also demonstrate the power of integrated spatial and single-cell multi-omics to decipher cancer-specific invasive properties and develop targeted therapies.
Olaniru, OE;Kadolsky, U;Kannambath, S;Vaikkinen, H;Fung, K;Dhami, P;Persaud, SJ;
PMID: 36513063 | DOI: 10.1016/j.cmet.2022.11.009
Current differentiation protocols have not been successful in reproducibly generating fully functional human beta cells in vitro, partly due to incomplete understanding of human pancreas development. Here, we present detailed transcriptomic analysis of the various cell types of the developing human pancreas, including their spatial gene patterns. We integrated single-cell RNA sequencing with spatial transcriptomics at multiple developmental time points and revealed distinct temporal-spatial gene cascades. Cell trajectory inference identified endocrine progenitor populations and branch-specific genes as the progenitors differentiate toward alpha or beta cells. Spatial differentiation trajectories indicated that Schwann cells are spatially co-located with endocrine progenitors, and cell-cell connectivity analysis predicted that they may interact via L1CAM-EPHB2 signaling. Our integrated approach enabled us to identify heterogeneity and multiple lineage dynamics within the mesenchyme, showing that it contributed to the exocrine acinar cell state. Finally, we have generated an interactive web resource for investigating human pancreas development for the research community.