Nat Neurosci. 2019 Jan;22(1):47-56.
Fu H, Possenti A, Freer R, Nakano Y, Villegas NCH, Tang M, Cauhy PVM, Lassus BA, Chen S, Fowler SL, Figueroa HY, Huey ED, Johnson GVW, Vendruscolo M, Duff KE.
PMID: 30559469 | DOI: 10.1038/s41593-018-0298-7
Excitatory neurons are preferentially impaired in early Alzheimer's disease but the pathways contributing to their relative vulnerability remain largely unknown. Here we report that pathological tau accumulation takes place predominantly in excitatory neurons compared to inhibitory neurons, not only in the entorhinal cortex, a brain region affected in early Alzheimer's disease, but also in areas affected later by the disease. By analyzing RNA transcripts from single-nucleus RNA datasets, we identified a specific tau homeostasis signature of genes differentially expressed in excitatory compared to inhibitory neurons. One of the genes, BCL2-associated athanogene 3 (BAG3), a facilitator of autophagy, was identified as a hub, or master regulator, gene. We verified that reducing BAG3 levels in primary neurons exacerbated pathological tau accumulation, whereas BAG3 overexpression attenuated it. These results define a tau homeostasis signature that underlies the cellular and regional vulnerability of excitatory neurons to tau pathology.
Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3
Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons
Folorunso, OO;Brown, SE;Baruah, J;Harvey, TL;Jami, SA;Radzishevsky, I;Wolosker, H;McNally, JM;Gray, JA;Vasudevan, A;Balu, DT;
PMID: 37311798 | DOI: 10.1038/s41598-023-35615-5
The proper development and function of telencephalic GABAergic interneurons is critical for maintaining the excitation and inhibition (E/I) balance in cortical circuits. Glutamate contributes to cortical interneuron (CIN) development via N-methyl-D-aspartate receptors (NMDARs). NMDAR activation requires the binding of a co-agonist, either glycine or D-serine. D-serine (co-agonist at many mature forebrain synapses) is racemized by the neuronal enzyme serine racemase (SR) from L-serine. We utilized constitutive SR knockout (SR-/-) mice to investigate the effect of D-serine availability on the development of CINs and inhibitory synapses in the prelimbic cortex (PrL). We found that most immature Lhx6 + CINs expressed SR and the obligatory NMDAR subunit NR1. At embryonic day 15, SR-/- mice had an accumulation of GABA and increased mitotic proliferation in the ganglionic eminence and fewer Gad1 + (glutamic acid decarboxylase 67 kDa; GAD67) cells in the E18 neocortex. Lhx6 + cells develop into parvalbumin (PV+) and somatostatin (Sst+) CINs. In the PrL of postnatal day (PND) 16 SR-/- mice, there was a significant decrease in GAD67+ and PV+, but not SST + CIN density, which was associated with reduced inhibitory postsynaptic potentials in layer 2/3 pyramidal neurons. These results demonstrate that D-serine availability is essential for prenatal CIN development and postnatal cortical circuit maturation.
Brain Struct Funct. 2014 Nov 27.
de Kloet AD, Wang L, Ludin JA, Smith JA, Pioquinto DJ, Hiller H, Steckelings UM, Scheuer DA, Sumners C, Krause EG.
PMID: 25427952
Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.
Becker-Krail, D;Ketchesin, K;Burns, J;Zong, W;Hildebrand, M;DePoy, L;Vadnie, C;Tseng, G;Logan, R;Huang, Y;McClung, C;
| DOI: 10.1016/j.biopsych.2022.02.007
Background Substance use disorders (SUDs) are associated with disruptions in circadian rhythms. Both human and animal work has shown the integral role for circadian clocks in the modulation of reward behaviors. Interestingly, astrocytes have emerged as key regulators of circadian rhythmicity. However, no studies to date have identified the role of circadian astrocyte function in the nucleus accumbens (NAc), a hub for reward regulation, or determined the importance of these rhythms for reward-related behavior. Methods Using astrocyte-specific RNA-sequencing across time-of-day, we first characterized diurnal variation of the NAc astrocyte transcriptome. We then investigated the functional significance of this circadian regulation through viral-mediated disruption of molecular clock function in NAc astrocytes, followed by assessment of reward-related behaviors, metabolic-related molecular assays, and whole-cell electrophysiology in the NAc. Results Strikingly, ∼43% of the astrocyte transcriptome has a diurnal rhythm and key metabolic pathways were enriched among the top rhythmic genes. Moreover, mice with a viral-mediated loss of molecular clock function in NAc astrocytes show a significant increase in locomotor response to novelty, exploratory drive, operant food self-administration and motivation. At the molecular level, these animals also show disrupted metabolic gene expression, along with significant downregulation of both lactate and glutathione levels in the NAc. Importantly, loss of NAc astrocyte clock function also significantly altered glutamatergic signaling onto neighboring medium spiny neurons, alongside upregulated glutamate-related gene expression. Conclusions Taken together, these findings demonstrate a novel role for astrocyte circadian molecular clock function in the regulation of the NAc and reward-related behaviors.
Quina LA1, Walker A1, Morton G1, Han V1, Turner EE2,3
PMID: 32332079 | DOI: 10.1523/ENEURO.0527-19.2020
The lateral habenula (LHb) sends complex projections to several areas of the mesopontine tegmentum, the raphe, and the hypothalamus. However, few markers have been available to distinguish subsets of LHb neurons that may serve these pathways. In order to address this complexity, we examined the mouse and rat LHb for neurons that express the GABA biosynthesis enzymes glutamate decarboxylase 1 and 2 (GAD1, GAD2), and the vesicular GABA transporter (VGAT). The mouse LHb contains a population of neurons that express GAD2, while the rat LHb contains discrete populations of neurons that express GAD1 and VGAT. However, we could not detect single neurons in either species that co-express a GABA synthetic enzyme and VGAT, suggesting that these LHb neurons do not use GABA for conventional synaptic transmission. Instead, all of the neuronal types expressing a GABAergic marker in both species showed co-expression of the glutamate transporter VGluT2. Anterograde tract-tracing of the projections of GAD2-expressing LHb neurons in Gad2Cre mice, combined with retrograde tracing from selected downstream nuclei, show that LHb-GAD2 neurons project selectively to the midline structures in the mesopontine tegmentum, including the median raphe and nucleus incertus, and only sparsely innervate the hypothalamus, rostromedial tegmental nucleus, and ventral tegmental area. Postsynaptic recording of LHb-GAD2 neuronal input to tegmental neurons confirms that glutamate, not GABA, is the fast neurotransmitter in this circuit. Thus GAD2 expression can serve as a marker for functional studies of excitatory neurons serving specific LHb output pathways in mice.SIGNFICANCE STATEMENT The lateral habenula provides a major link between subcortical forebrain areas and the dopamine (DA) and serotonin (5HT) systems of the midbrain and pons, and it has been implicated in reward mechanisms and the regulation of mood states. Few markers have been available for the specific cell types and complex output pathways of the lateral habenula. Here we examined the expression of genes mediating GABAergic and glutamatergic transmission in the mouse and rat LHb, where no neurons in either species expressed a full complement of GABAergic markers, and all expressed the glutamatergic marker VGluT2. Consistent with this, in mice the LHb GAD2 neurons are excitatory and appear to use only glutamate for fast synaptic transmission.
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH.
PMID: 27088801 | DOI: 10.1172/JCI83551
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
Patrick Card J, Johnson AL, Llewellyn-Smith IJ, Zheng H, Anand R, Brierley DI, Trapp S, Rinaman L.
PMID: 30019398 | DOI: 10.1002/cne.24482
Glutamatergic neurons that express pre-proglucagon (PPG) and are immunopositive (+) for glucagon-like peptide-1 (i.e., GLP-1+ neurons) are located within the caudal nucleus of the solitary tract (cNTS) and medullary reticular formation in rats and mice. GLP-1 neurons give rise to an extensive central network in which GLP-1 receptor (R) signaling suppresses food intake, attenuates rewarding, increases avoidance, and stimulates stress responses, partly via . GLP-1R signaling within the cNTS. In mice, noradrenergic (A2) cNTS neurons express GLP-1R, whereas PPG neurons do not. In the present study, confocal microscopy in rats confirmed that prolactin-releasing peptide (PrRP)+ A2 neurons are closely apposed by GLP-1+ axonal varicosities. Surprisingly, GLP-1+ appositions were also observed on dendrites of PPG/GLP-1+ neurons in both species, and electron microscopy in rats revealed that GLP-1+ boutons form asymmetric synaptic contacts with GLP-1+ dendrites. However, RNAscope confirmed that rat GLP-1 neurons do not express GLP-1R mRNA. Similarly, Ca2+ imaging of somatic and dendritic responses in mouse ex vivo slices confirmed that PPG neurons do not respond directly to GLP-1, and a mouse cross-breeding strategy revealed that fewer than 1% of PPG neurons co-express GLP-1R. Collectively, these data suggest that GLP-1R signaling pathways modulate the activity of PrRP+ A2 neurons, and also reveal a local "feed-forward" synaptic network among GLP-1 neurons that apparently does not utilize GLP-1R signaling. This local GLP-1 network may instead use glutamatergic signaling to facilitate dynamic and potentially selective recruitment of GLP-1 neural populations that shape behavioral and physiological responses to internal and external challenges.
Frontiers in neuroscience
Liu, A;Cheng, Y;Huang, J;
PMID: 37214399 | DOI: 10.3389/fnins.2023.1178693
Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.
Bertozzi, A;Wu, CC;Hans, S;Brand, M;Weidinger, G;
PMID: 34748730 | DOI: 10.1016/j.ydbio.2021.11.001
Zebrafish can achieve scar-free healing of heart injuries, and robustly replace all cardiomyocytes lost to injury via dedifferentiation and proliferation of mature cardiomyocytes. Previous studies suggested that Wnt/β-catenin signaling is active in the injured zebrafish heart, where it induces fibrosis and prevents cardiomyocyte cell cycling. Here, via targeting the destruction complex of the Wnt/β-catenin pathway with pharmacological and genetic tools, we demonstrate that Wnt/β-catenin activity is required for cardiomyocyte proliferation and dedifferentiation, as well as for maturation of the scar during regeneration. Using cardiomyocyte-specific conditional inhibition of the pathway, we show that Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte proliferation. Our results stand in contrast to previous reports and rather support a model in which Wnt/β-catenin signaling plays a positive role during heart regeneration in zebrafish.
Hartwig J, Tarbashevich K, Seggewiß J, Stehling M, Bandemer J, Grimaldi C, Paksa A, Groß-Thebing T, Meyen D, Raz E.
PMID: 25049415 | DOI: 201400043
The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.
Vectorology for Optogenetics and Chemogenetics
Lin, J;Dimidschstein, J;
| DOI: 10.1007/978-1-0716-2918-5_9
Recombinant adeno-associated viruses can be coupled with short regulatory elements to restrict viral expression to specific cellular populations. These viral vectors can be used as tools for basic research to dissect many aspects of the biology of specific cellular subtypes in health and disease, and across species. A handful of enhancers have already been described in the nervous system, and recent studies suggest that transcriptomic and epigenetic data can be leveraged to systematize the discovery of novel elements to restrict viral expression to any cell type. However, a thorough characterization of the expression profile conferred by these short sequences is required to demonstrate their utility in the experimental context in which they will be ultimately used. Here we describe a complete guide to select, screen, and validate the expression profile of enhancers to target specific subtypes of neurons.