Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (3)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • GLP1R (3) Apply GLP1R filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (3)
  • Vegfa (2) Apply Vegfa filter
  • TERT (2) Apply TERT filter
  • Bdnf (2) Apply Bdnf filter
  • Gcm1 (2) Apply Gcm1 filter
  • GLP-1R (2) Apply GLP-1R filter
  • V-nCoV2019-S (2) Apply V-nCoV2019-S filter
  • 18 (2) Apply 18 filter
  • 31 (2) Apply 31 filter
  • 33 (2) Apply 33 filter
  • KFDV (2) Apply KFDV filter
  • CD274 (1) Apply CD274 filter
  • AGTR1 (1) Apply AGTR1 filter
  • ANGPT2 (1) Apply ANGPT2 filter
  • CD68 (1) Apply CD68 filter
  • BRCA1 (1) Apply BRCA1 filter
  • IL17A (1) Apply IL17A filter
  • Rspo3 (1) Apply Rspo3 filter
  • CDH1 (1) Apply CDH1 filter
  • DICER1 (1) Apply DICER1 filter
  • CSF1 (1) Apply CSF1 filter
  • Mc4r (1) Apply Mc4r filter
  • Gfral (1) Apply Gfral filter
  • Gata3 (1) Apply Gata3 filter
  • GCG (1) Apply GCG filter
  • GIPR (1) Apply GIPR filter
  • GLI1 (1) Apply GLI1 filter
  • GREM1 (1) Apply GREM1 filter
  • GUCA2A (1) Apply GUCA2A filter
  • GUCA2B (1) Apply GUCA2B filter
  • GUCY2C (1) Apply GUCY2C filter
  • Trem2 (1) Apply Trem2 filter
  • Lpar2 (1) Apply Lpar2 filter
  • HIF1A (1) Apply HIF1A filter
  • HOXA13 (1) Apply HOXA13 filter
  • LAG3 (1) Apply LAG3 filter
  • LPAR1 (1) Apply LPAR1 filter
  • DUSP6 (1) Apply DUSP6 filter
  • PRLR (1) Apply PRLR filter
  • Tpbpa (1) Apply Tpbpa filter
  • MRC1 (1) Apply MRC1 filter
  • MSI2 (1) Apply MSI2 filter
  • Sp5 (1) Apply Sp5 filter
  • Npy (1) Apply Npy filter
  • NOTCH3 (1) Apply NOTCH3 filter
  • GPR15 (1) Apply GPR15 filter
  • PDCD1LG2 (1) Apply PDCD1LG2 filter
  • CDX2 (1) Apply CDX2 filter
  • LEPR (1) Apply LEPR filter

Product

  • (-) Remove RNAscope 2.5 VS Assay filter RNAscope 2.5 VS Assay (3)

Research area

  • Cancer (3) Apply Cancer filter
  • HPV (2) Apply HPV filter
  • Infectious Disease (2) Apply Infectious Disease filter

Category

  • Publications (3) Apply Publications filter
Human papillomavirus (HPV) status of non-tobacco related squamous cell carcinomas of the lateral tongue.

Oral Oncol. Apr; 50(4):306–310.

Poling JS, Ma XJ, Bui S, Luo Y, Li R, Koch WM, Westra WH (2014).
PMID: 24485566 | DOI: 10.1016/j.oraloncology.2014.01.006.

OBJECTIVES: The human papillomavirus (HPV) is an important cause of some head and neck squamous cell carcinomas (HNSCCs), but its role in cancer of the lateral tongue is debatable. Suspicion of HPV causation is heightened when these lateral tongue carcinomas arise in patients that are young and/or have never smoked. The purpose of this study was to determine the incidence of transcriptionally active high risk HPV in these tumors, with a particular emphasis on non-smoking patients who are often presumed to have HPV-positive tumors. METHODS: We evaluated 78 HNSCCs of the lateral tongue for the presence of HPV using p16 immunohistochemistry and an RNA in situ hybridization assay targeting HPV E6/E7 mRNA. The study population was enriched for patients without traditional risk factors such as smoking and drinking. RESULTS: P16 overexpression was detected in 9 (11.5%) of 78 cases, but HPV E6/E7 mRNA transcripts were detected in only 1 (1.3%) case (positive predictive value of p16 staining for the presence of transcriptionally active HPV=0.12). HPV mRNA transcripts were not detected in any patient under 40 (n=11), or in patients who had never smoked (n=44), had quit smoking (n=15), and/or were only light consumers of alcohol (n=57). CONCLUSIONS: HPV is not detected in the vast majority of lateral tongue carcinomas. In light of the observation that HPV plays little if any role in the development of these cancers, routine HPV testing is unwarranted , even for patients without traditional risk factors. P16 staining is not a reliable marker for the presence of transcriptionally active HPV at this particular anatomic site.
CDX2 Expression in Primary Skin Tumors- Case Series and Review of the Literature

Human pathology

2022 Aug 01

Tekin, B;Kundert, P;Yang, HH;Guo, R;
PMID: 35926811 | DOI: 10.1016/j.humpath.2022.07.013

CDX2 expression characterizes tumors of gastrointestinal origin, including those of intestinal-type differentiation. In dermatopathology, CDX2 expression is reported in four settings: cutaneous metastases from carcinomas of intestinal origin or differentiation, extramammary Paget's disease associated with an underlying colorectal or urothelial tumor, pilomatricomas and pilomatrical carcinomas, and rare primary cutaneous (adeno)squamous carcinomas with intestinal immunophenotype. Over 4 years (10/2017-10/2021), 252 dermatopathology cases with CDX2 immunostain were reviewed, revealing 46 cases with confirmed positive staining. Among them, 11 cases confirmed as primary non-intestinal type cutaneous carcinoma with definitively positive CDX2 nuclear staining were further studied. All cases demonstrated basaloid morphology with atypia, variable necrosis, and brisk mitotic activity. Cases 1-5 had heterogeneous features that cannot be further classified, including two cases with neuroendocrine or pseudoglandular/pseudopapillary features, and one case with HPV high risk E6/E7 ISH positivity. In cases 6 through 11, the diagnosis of pilomatrical carcinoma was supported morphologically. This study substantiates the association of CDX2 with pilomatrical carcinoma. In addition, CDX2 positivity was observed in a subset of basaloid cutaneous carcinomas of ambiguous classification. However, this finding also raises a diagnostic pitfall in clinical diagnostic specificity of the CDX2 immunostain in skin cancers, which can be observed in rare while heterogenous subsets of primary cutaneous carcinomas with primitive cytomorphology.
Validation of a novel diagnostic standard in HPV-positive oropharyngeal squamous cell carcinoma.

British journal of cancer, 108(6):1332–1339.

Schache AG, Liloglou T, Risk JM, Jones TM, Ma XJ, Wang H, Bui S, Luo Y, Sloan P, Shaw RJ, Robinson M (2013).
PMID: 23412100 | DOI: 10.1038/bjc.2013.63.

BACKGROUND: Human papillomavirus (HPV) testing in oropharyngeal squamous cell carcinoma (OPSCC) is now advocated. Demonstration of transcriptionally active high-risk HPV (HR-HPV) in fresh tumour tissue is considered to be the analytical 'gold standard'. Clinical testing has focused on formalin-fixed paraffin-embedded (FFPE) tissue at the expense of sensitivity and specificity. Recently, a novel RNA in situ hybridisation test (RNAscope) has been developed for the detection of HR-HPV in FFPE tissue; however, validation against the 'gold standard' has not been reported. METHODS: A tissue microarray comprising FFPE cores from 79 OPSCC was tested using HR-HPV RNAscope. Analytical accuracy and prognostic capacity were established by comparison with the reference test; qRT-PCR for HR-HPV on matched fresh-frozen samples. RESULTS: High-risk HPV RNAscope had a sensitivity and specificity of 97 and 93%, respectively, against the reference test. Kaplan-Meier estimates of disease-specific survival (DSS, P=0.001) and overall survival (OS, P<0.001) by RNAscope were similar to the reference test (DSS, P=0.003, OS, P<0.001) and at least, not inferior to p16 immunohistochemistry +/- HR-HPV DNA-based tests. CONCLUSION: HR-HPV RNAscope demonstrates excellent analytical and prognostic performance against the 'gold standard'. These data suggest that the test could be developed to provide the 'clinical standard' for assigning a diagnosis of HPV-related OPSCC.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?