Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (110)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • (-) Remove Axin2 filter Axin2 (74)
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • (-) Remove AGRP filter AGRP (32)
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (29) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (24) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (12) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (6) Apply RNAscope filter
  • RNAscope 2.0 Assay (6) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter

Research area

  • Neuroscience (25) Apply Neuroscience filter
  • Stem Cells (23) Apply Stem Cells filter
  • Cancer (20) Apply Cancer filter
  • Development (14) Apply Development filter
  • Developmental (8) Apply Developmental filter
  • Stem cell (8) Apply Stem cell filter
  • Other (7) Apply Other filter
  • Metabolism (5) Apply Metabolism filter
  • Other: Endocrinology (3) Apply Other: Endocrinology filter
  • Inflammation (2) Apply Inflammation filter
  • Obesity (2) Apply Obesity filter
  • Signalling (2) Apply Signalling filter
  • Weight Loss (2) Apply Weight Loss filter
  • Cell Biology (1) Apply Cell Biology filter
  • CGT (1) Apply CGT filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • diabetes (1) Apply diabetes filter
  • Endocrinology (1) Apply Endocrinology filter
  • Eye (1) Apply Eye filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • HPV (1) Apply HPV filter
  • Hunger (1) Apply Hunger filter
  • Hypertension (1) Apply Hypertension filter
  • hypothalamic regulation of glucose (1) Apply hypothalamic regulation of glucose filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Liver (1) Apply Liver filter
  • Lung (1) Apply Lung filter
  • Nutrition (1) Apply Nutrition filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Other: Congenital hypopituitarism (1) Apply Other: Congenital hypopituitarism filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Ophthalmology (1) Apply Other: Ophthalmology filter
  • Other: Sodium intake (1) Apply Other: Sodium intake filter
  • Other:Hypertension (1) Apply Other:Hypertension filter
  • Progenitor Cell (1) Apply Progenitor Cell filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • Sex Differences (1) Apply Sex Differences filter
  • Smooth Muscle (1) Apply Smooth Muscle filter
  • Tumorigenesis (1) Apply Tumorigenesis filter

Category

  • Publications (110) Apply Publications filter
A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon

Cellular and molecular gastroenterology and hepatology

2021 Dec 29

Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015

Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Single mRNA detection of Wnt signaling pathway in the human limbus

Experimental eye research

2023 Jan 23

Bonnet, C;Ruiz, M;Gonzalez, S;Tseng, CH;Bourges, JL;Behar-Cohen, F;Deng, SX;
PMID: 36702232 | DOI: 10.1016/j.exer.2022.109337

Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by their close microenvironment. It has been shown that Wnt signaling pathway is crucial for LSCs regulation. Previous differential gene profiling studies confirmed the preferential expression of specific Wnt ligands (WNT2, WNT6, WNT11, WNT16) and Wnt inhibitors (DKK1, SFRP5, WIF1, FRZB) in the limbal region compared to the cornea. Among all frizzled receptors, frizzled7 (Fzd7) was found to be preferentially expressed in the basal limbal epithelium. However, the exact localization of Wnt signaling molecules-producing cells in the limbus remains unknown. The current study aims to evaluate the in situ spatial expression of these 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7. Wnt ligands, DKK1, and Fzd7 expression were scattered within the limbal epithelium, at a higher abundance in the basal layer than the superficial layer. SFRP5 expression was diffuse among the limbal epithelium, whereas WIF1 and FRZB expression was clustered at the basal limbal epithelial layer corresponding to the areas of high levels of Fzd7 expression. Quantitation of the fluorescence intensity showed that all 4 Wnt ligands, 3 Wnt inhibitors (WIF1, DKK1, FRZB), and Fzd7 were highly expressed at the basal layer of the limbus, then in a decreasing gradient toward the superficial layer (P < 0.05). The expression levels of all 4 Wnt ligands, FRZB, and Fzd7 in the basal epithelial layer were higher in the limbus than the central cornea (P < 0.05). All 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7 were also highly expressed in the limbal stroma immediately below the epithelium but not in the cornea (P < 0.05). In addition, Fzd7 had a preferential expression in the superior limbus compared to other quadrants (P < 0.05). Taken together, the unique expression patterns of the Wnt molecules involved in the limbus suggests the involvement of both paracrine and autocrine effects in LSCs regulation, and a fine balance between Wnt activators and inhibitors to govern LSC fate.
A Clinical Applicable Gene Expression Classifier Reveals Intrinsic and Extrinsic Contributions to Consensus Molecular Subtypes in Primary and Metastatic Colon Cancer.

Clin Cancer Res.

2019 Apr 19

Piskol R, Huw LY, Sergin I, Klijn C, Modrusan Z, Kim D, Kljavin NM, Tam R, Patel R, Burton J, Penuel E, Qu X, Koeppen H, Sumiyoshi T, de Sauvage FJ, Lackner MR, de Sousa E Melo F, Kabbarah O.
PMID: 31004000 | DOI: 10.1158/1078-0432.CCR-18-3032

Abstract

PURPOSE:

Four consensus molecular subtypes (CMS1-4) of colorectal cancer (CRC) were identified in primary tumors and found to be associated with distinctive biological features and clinical outcomes. Given that distant metastasis largely accounts for CRC-related mortality, we examined the molecular and clinical attributes of CMS in metastatic CRC (mCRC).

EXPERIMENTAL DESIGN:

We developed a CRC-focused Nanostring based CMS classifier that is ideally suited to interrogate archival tissues. We successfully employ this panel in the CMS classification of FFPE tissues from mCRC cohorts, one of which is comprised of paired primary tumors and metastases. Finally, we developed novel mouse implantation models to enable modelling of CRC in vivo at relevant sites.

RESULTS:

Using our classifier we find that the biological hallmarks of mCRC, including CMS, are in general highly similar to those observed in non-metastatic early stage disease. Importantly, our data demonstrate that CMS1 has the worst outcome in relapsed disease, compared to other CMS. Assigning CMS to primary tumors and their matched metastases revealed mostly concordant subtypes between primary and metastasis. Molecular analysis of matched discordant pairs revealed differences in stromal composition at each site. The development of two novel in vivo orthotopic implantation models further reinforces the notion that extrinsic factors may impact on CMS identification in matched primary and metastatic CRC.

CONCLUSION:

We describe the utility of a Nanostring panel for CMS classification of FFPE clinical samples. Our work reveals the impact of intrinsic and extrinsic factors on CRC heterogeneity during disease progression.

The 26RFa (QRFP)/GPR103 neuropeptidergic system in mice relays insulin signalling into the brain to regulate glucose homeostasis

Diabetologia

2022 Apr 27

El Mehdi, M;Takhlidjt, S;Devère, M;Arabo, A;Le Solliec, MA;Maucotel, J;Bénani, A;Nedelec, E;Duparc, C;Lefranc, B;Leprince, J;Anouar, Y;Prévost, G;Chartrel, N;Picot, M;
PMID: 35476025 | DOI: 10.1007/s00125-022-05706-5

26RFa (pyroglutamilated RFamide peptide [QRFP]) is a biologically active peptide that regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity at the periphery. 26RFa is also produced by a neuronal population localised in the hypothalamus. In this study we investigated whether 26RFa neurons are involved in the hypothalamic regulation of glucose homeostasis.26Rfa+/+, 26Rfa-/- and insulin-deficient male C57Bl/6J mice were used in this study. Mice received an acute intracerebroventricular (i.c.v.) injection of 26RFa, insulin or the 26RFa receptor (GPR103) antagonist 25e and were subjected to IPGTTs, insulin tolerance tests, acute glucose-stimulated insulin secretion tests and pyruvate tolerance tests (PTTs). Secretion of 26RFa by hypothalamic explants after incubation with glucose, leptin or insulin was assessed. Expression and quantification of the genes encoding 26RFa, agouti-related protein, the insulin receptor and GPR103 were evaluated by quantitative reverse transcription PCR and RNAscope in situ hybridisation.Our data indicate that i.c.v.-injected 26RFa induces a robust antihyperglycaemic effect associated with an increase in insulin production by the pancreatic islets. In addition, we found that insulin strongly stimulates 26Rfa expression and secretion by the hypothalamus. RNAscope experiments revealed that neurons expressing 26Rfa are mainly localised in the lateral hypothalamic area, that they co-express the gene encoding the insulin receptor and that insulin induces the expression of 26Rfa in these neurons. Concurrently, the central antihyperglycaemic effect of insulin is abolished in the presence of a GPR103 antagonist and in 26RFa-deficient mice. Finally, our data indicate that the hypothalamic 26RFa neurons are not involved in the central inhibitory effect of insulin on hepatic glucose production, but mediate the central effects of the hormone on its own peripheral production.We have identified a novel mechanism in the hypothalamic regulation of glucose homeostasis, the 26RFa/GPR103 system, and we provide evidence that this neuronal peptidergic system is a key relay for the central regulation of glucose metabolism by insulin.
NPFF Decreases Activity of Human Arcuate NPY Neurons: A Study in Embryonic-Stem-Cell-Derived Model

International journal of molecular sciences

2022 Mar 17

Torz, L;Niss, K;Lundh, S;Rekling, JC;Quintana, CD;Frazier, SED;Mercer, AJ;Cornea, A;Bertelsen, CV;Gerstenberg, MK;Hansen, AMK;Guldbrandt, M;Lykkesfeldt, J;John, LM;Villaescusa, JC;Petersen, N;
PMID: 35328681 | DOI: 10.3390/ijms23063260

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.
Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders

Cell metabolism

2022 Feb 01

Ramírez, S;Haddad-Tóvolli, R;Radosevic, M;Toledo, M;Pané, A;Alcolea, D;Ribas, V;Milà-Guasch, M;Pozo, M;Obri, A;Eyre, E;Gómez-Valadés, AG;Chivite, I;Van Eeckhout, T;Zalachoras, I;Altirriba, J;Bauder, C;Imbernón, M;Garrabou, G;Garcia-Ruiz, C;Nogueiras, R;Soto, D;Gasull, X;Sandi, C;Brüning, JC;Fortea, J;Jiménez, A;Fernández-Checa, JC;Claret, M;
PMID: 35108514 | DOI: 10.1016/j.cmet.2021.12.023

Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus. Genetic interference with pregnenolone synthesis by Star deletion in hypothalamic POMC, but not AgRP neurons, deteriorated recognition memory independently of metabolic disturbances. Our data suggest that pregnenolone's effects on cognitive function were mediated via an autocrine mechanism on POMC neurons, influencing hippocampal long-term potentiation. The relevance of central pregnenolone on cognition was also confirmed in metabolically unhealthy patients with obesity. Our data reveal an unsuspected role for POMC neuron-derived neurosteroids in cognition. These results provide the basis for a framework to investigate new facets of POMC neuron biology with implications for cognitive disorders.
NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons

Nat Commun

2020 Jan 23

Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3

Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons
Hypothalamic Grb10 enhances leptin signalling and promotes weight loss

Nature metabolism

2023 Jan 01

Liu, H;He, Y;Bai, J;Zhang, C;Zhang, F;Yang, Y;Luo, H;Yu, M;Liu, H;Tu, L;Zhang, N;Yin, N;Han, J;Yan, Z;Scarcelli, NA;Conde, KM;Wang, M;Bean, JC;Potts, CHS;Wang, C;Hu, F;Liu, F;Xu, Y;
PMID: 36593271 | DOI: 10.1038/s42255-022-00701-x

Leptin acts on hypothalamic neurons expressing agouti-related protein (AgRP) or pro-opiomelanocortin (POMC) to suppress appetite and increase energy expenditure, but the intracellular mechanisms that modulate central leptin signalling are not fully understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an adaptor protein that binds to the insulin receptor and negatively regulates its signalling pathway, can interact with the leptin receptor and enhance leptin signalling. Ablation of Grb10 in AgRP neurons promotes weight gain, while overexpression of Grb10 in AgRP neurons reduces body weight in male and female mice. In parallel, deletion or overexpression of Grb10 in POMC neurons exacerbates or attenuates diet-induced obesity, respectively. Consistent with its role in leptin signalling, Grb10 in AgRP and POMC neurons enhances the anorexic and weight-reducing actions of leptin. Grb10 also exaggerates the inhibitory effects of leptin on AgRP neurons via ATP-sensitive potassium channel-mediated currents while facilitating the excitatory drive of leptin on POMC neurons through transient receptor potential channels. Our study identifies Grb10 as a potent leptin sensitizer that contributes to the maintenance of energy homeostasis by enhancing the response of AgRP and POMC neurons to leptin.
Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment

Science advances

2022 Jun 10

Guerrero-Juarez, CF;Lee, GH;Liu, Y;Wang, S;Karikomi, M;Sha, Y;Chow, RY;Nguyen, TTL;Iglesias, VS;Aasi, S;Drummond, ML;Nie, Q;Sarin, K;Atwood, SX;
PMID: 35687691 | DOI: 10.1126/sciadv.abm7981

How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus

Development (Cambridge, England)

2021 May 15

Kaiser, K;Jang, A;Kompanikova, P;Lun, MP;Prochazka, J;Machon, O;Dani, N;Prochazkova, M;Laurent, B;Gyllborg, D;van Amerongen, R;Fame, RM;Gupta, S;Wu, F;Barker, RA;Bukova, I;Sedlacek, R;Kozmik, Z;Arenas, E;Lehtinen, MK;Bryja, V;
PMID: 34032267 | DOI: 10.1242/dev.192054

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.
Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart

Developmental biology

2021 Nov 06

Bertozzi, A;Wu, CC;Hans, S;Brand, M;Weidinger, G;
PMID: 34748730 | DOI: 10.1016/j.ydbio.2021.11.001

Zebrafish can achieve scar-free healing of heart injuries, and robustly replace all cardiomyocytes lost to injury via dedifferentiation and proliferation of mature cardiomyocytes. Previous studies suggested that Wnt/β-catenin signaling is active in the injured zebrafish heart, where it induces fibrosis and prevents cardiomyocyte cell cycling. Here, via targeting the destruction complex of the Wnt/β-catenin pathway with pharmacological and genetic tools, we demonstrate that Wnt/β-catenin activity is required for cardiomyocyte proliferation and dedifferentiation, as well as for maturation of the scar during regeneration. Using cardiomyocyte-specific conditional inhibition of the pathway, we show that Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte proliferation. Our results stand in contrast to previous reports and rather support a model in which Wnt/β-catenin signaling plays a positive role during heart regeneration in zebrafish.
Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver

Nature (2015)

Wang B, Zhao L, Fish M, Logan CY, Nusse R.
PMID: 26245375 | DOI: 10.1038/nature14863

The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2 in mice, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thereby differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes, and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?