Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (74)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • (-) Remove DRD1 filter DRD1 (42)
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • (-) Remove Wnt5a filter Wnt5a (31)
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (22) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (17) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (9) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter

Research area

  • Neuroscience (40) Apply Neuroscience filter
  • Stem Cells (7) Apply Stem Cells filter
  • Development (6) Apply Development filter
  • Developmental (5) Apply Developmental filter
  • Cancer (4) Apply Cancer filter
  • Addiction (3) Apply Addiction filter
  • Behavior (3) Apply Behavior filter
  • behavioral (3) Apply behavioral filter
  • Inflammation (3) Apply Inflammation filter
  • Other (3) Apply Other filter
  • Feeding Behavior (2) Apply Feeding Behavior filter
  • Psychiatry (2) Apply Psychiatry filter
  • Reproduction (2) Apply Reproduction filter
  • anorexia nervosa (1) Apply anorexia nervosa filter
  • Bone (1) Apply Bone filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • CRISPR/dCas9 (1) Apply CRISPR/dCas9 filter
  • diabetes (1) Apply diabetes filter
  • DYT1dystonia (1) Apply DYT1dystonia filter
  • Endocrine (1) Apply Endocrine filter
  • Endocrinology (1) Apply Endocrinology filter
  • Evolution (1) Apply Evolution filter
  • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
  • Huntington’s Disease (1) Apply Huntington’s Disease filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Neurobiology (1) Apply Neurobiology filter
  • Nueroscience (1) Apply Nueroscience filter
  • Obesity (1) Apply Obesity filter
  • OCD (1) Apply OCD filter
  • Other: Drug Development (1) Apply Other: Drug Development filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
  • Reward Processing (1) Apply Reward Processing filter
  • Reward seeking (1) Apply Reward seeking filter
  • Sex Differences (1) Apply Sex Differences filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • Stress Related Eating (1) Apply Stress Related Eating filter
  • Tramautic Stress (1) Apply Tramautic Stress filter
  • Traumatic brain injury (1) Apply Traumatic brain injury filter

Category

  • Publications (74) Apply Publications filter
Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward.

Neuron.

2015 Sep 02

Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, Pyo CO, Park SI, Marcinkiewcz CM, Crowley NA, Krashes MJ, Lowell BB, Kash TL, Rogers JA, Bruchas MR.
PMID: 26335648 | DOI: 10.1016/j.neuron.2015.08.019

The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.

Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment

Science advances

2022 Jun 10

Guerrero-Juarez, CF;Lee, GH;Liu, Y;Wang, S;Karikomi, M;Sha, Y;Chow, RY;Nguyen, TTL;Iglesias, VS;Aasi, S;Drummond, ML;Nie, Q;Sarin, K;Atwood, SX;
PMID: 35687691 | DOI: 10.1126/sciadv.abm7981

How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state

Developmental Cell

2022 Jun 01

Liu, Y;Guerrero-Juarez, C;Xiao, F;Shettigar, N;Ramos, R;Kuan, C;Lin, Y;de Jesus Martinez Lomeli, L;Park, J;Oh, J;Liu, R;Lin, S;Tartaglia, M;Yang, R;Yu, Z;Nie, Q;Li, J;Plikus, M;
| DOI: 10.1016/j.devcel.2022.06.005

Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus

Development (Cambridge, England)

2021 May 15

Kaiser, K;Jang, A;Kompanikova, P;Lun, MP;Prochazka, J;Machon, O;Dani, N;Prochazkova, M;Laurent, B;Gyllborg, D;van Amerongen, R;Fame, RM;Gupta, S;Wu, F;Barker, RA;Bukova, I;Sedlacek, R;Kozmik, Z;Arenas, E;Lehtinen, MK;Bryja, V;
PMID: 34032267 | DOI: 10.1242/dev.192054

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.
The gut-brain axis mediates bacterial driven modulation of reward signaling

Molecular metabolism

2023 Jun 26

Kim, JS;Williams, KC;Kirkland, RA;Schade, R;Freeman, KG;Cawthon, CR;Rautmann, AW;Smith, JM;Edwards, GL;Glenn, TC;Holmes, PV;de Lartigue, G;de La Serre, CB;
PMID: 37380023 | DOI: 10.1016/j.molmet.2023.101764

Obesity is associated with deficits in reward which have been linked to compensatory overeating. The vagus nerve is a direct neural pathway that conveys post-ingestive feedback from the gut to the brain, including the reward regions, and vagal activation causes stereotypical reward behaviors. Chronic high fat (HF) feeding alters vagal signaling potentially dampening food-associated reward. Microbiota composition changes rapidly with HF feeding, and a HF-type microbiota is sufficient to alter vagal structure and function. However, whether microbiota-driven alterations in vagal signaling affect host appetitive feeding behavior is unknown. Here, we investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.
Pharmacological targeting of G protein-coupled receptor heteromers

Pharmacological research

2022 Sep 28

Moreno, E;Casajuana-Martin, N;Coyle, M;Campos, BC;Galaj, E;Del Torrent, CL;Seyedian, A;Rea, W;Cai, NS;Bonifazi, A;Florán, B;Xi, ZX;Guitart, X;Casadó, V;Newman, AH;Bishop, C;Pardo, L;Ferré, S;
PMID: 36182040 | DOI: 10.1016/j.phrs.2022.106476

A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.
Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence.

J Neurosci.

2016 Dec 15

Caprioli D, Venniro M, Zhang M, Bossert JM, Warren BL, Hope BT, Shaham Y.
PMID: 27980115 | DOI: 10.1523/JNEUROSCI.3091-16.2016

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral and dorsomedial striatum (DLS, DMS) in this incubation.We trained rats to self-administer palatable food pellets (6 days, 6-h/d) and methamphetamine (12 days, 6-h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/day) for 19 days. We used in situ hybridization to measure co-labeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization co-labeling results, we tested the causal role of DMS D1- and D2-family receptors, and DMS neuronal ensembles in 'incubated' methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively.Methamphetamine seeking was higher after 21 days of voluntary abstinence than after 1 day (incubation of methamphetamine craving). The 'incubated' response was associated with increased Fos expression in DMS but not DLS; Fos was co-labeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21.Results demonstrate a role of DMS dopamine D1 and D2-receptors in incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation.

SIGNIFICANCE STATEMENT:

In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.

Mu Opioid Receptors in GABAergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food

Biological Psychiatry

2016 Dec 26

Charbogne P, Gardon O, Martín-García E, Keyworth HL, Matsui A, Mechling AE, Bienert T, Nasseef T, Robé A, Moquin L, Darcq E, Hamida SB, Robledo P, Matifas A, Befort K, Gavériaux-Ruff , Harsan LA, Von Everfeldt D, Hennig J, Gratton A, Kitchen I, Bailey A,
PMID: - | DOI: 10.1016/j.biopsych.2016.12.022

Background

Mu opioid receptors (MORs) are central to pain control, drug reward and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in GABAergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward.

Methods

We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in GABAergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology and microdialysis, probed neuronal activation by c-Fos immunohistochemistry and resting state-functional magnetic resonance imaging, and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food.

Results

Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area (VTA), local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures.

Conclusions

Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus beyond a well-established role in reward processing, operating at the level of local VTA neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.

TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc

Molecular psychiatry

2022 Jan 25

Liu, J;Wu, R;Seaman, R;Manz, KM;Johnson, B;Vu, J;Huang, Y;Zhang, Y;Robison, AJ;Neve, R;Grueter, BA;Dietz, D;Li, JX;
PMID: 35079125 | DOI: 10.1038/s41380-022-01448-3

Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
CREB binding at the Zfp189 promoter within medium spiny neuron subtypes differentially regulates behavioral and physiological adaptations over the course of cocaine use

Biological Psychiatry

2022 Aug 01

Teague, C;Picone, J;Wright, W;Browne, C;Silva, G;Futamura, R;Minier-Toribio, A;Estill, M;Ramakrishnan, A;Martinez-Rivera, F;Godino, A;Parise, E;Schmidt, K;Pulido, N;Lorsch, Z;Kim, J;Shen, L;Neve, R;Dong, Y;Nestler, E;Hamilton, P;
| DOI: 10.1016/j.biopsych.2022.07.022

Background Over the course of chronic drug use, brain transcriptional neuroadaptation are thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within mouse NAc. Methods To query the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified CRISPR/dCas9 constructs, capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. Results We observe that CREB binding to the Zfp189 promoter increases Zfp189 expression and diminishes the reinforcing responses to cocaine. We show further that NAc Zfp189 expression is increased within D1 medium spiny neurons (MSNs) in response to acute cocaine, but increased in both D1 and D2 MSNs in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiates electrophysiological activity of D1 and D2 MSNs - recapitulating the known effect of CREB on these neurons. Lastly, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. Conclusions Together, these findings point to the CREB-Zfp189 interaction within NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.
Divergent medial amygdala projections regulate approach–avoidance conflict behavior.

Nat Neurosci.

2019 Feb 25

Miller SM, Marcotulli D, Shen A, Zweifel LS.
PMID: 30804529 | DOI: 10.1038/s41593-019-0337-z

Avoidance of innate threats is often in conflict with motivations to engage in exploratory approach behavior. The neural pathways that mediate this approach-avoidance conflict are not well resolved. Here we isolated a population of dopamine D1 receptor (D1R)-expressing neurons within the posteroventral region of the medial amygdala (MeApv) in mice that are activated either during approach or during avoidance of an innate threat stimulus. Distinct subpopulations of MeApv-D1R neurons differentially innervate the ventromedial hypothalamus and bed nucleus of the stria terminalis, and these projections have opposing effects on investigation or avoidance of threatening stimuli. These projections are potently modulated through opposite actions of D1R signaling that bias approach behavior. These data demonstrate divergent pathways in the MeApv that can be differentially weighted toward exploration or evasion of threats.

A Shared Pattern of β-catenin Activation in Bronchopulmonary Dysplasia and Idiopathic Pulmonary Fibrosis

Am J Pathol.

2018 Jan 16

Sucre JMS, Deutsch GH, Jetter C, Ambalavanan N, Benjamin JT, Gleaves LA, Millis BA, Young LR, Blackwell TS, Kropski JA, Guttentag SH.
PMID: 29355514 | DOI: 10.1016/j.ajpath.2017.12.004

Wnt/β-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of β-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of β-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence co-localization demonstrated a consistent pattern of elevated nuclear phosphorylated β-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear β-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed β-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of β-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that β-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?