Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (98)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • (-) Remove FOS filter FOS (73)
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • (-) Remove MALAT1 filter MALAT1 (24)
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (31) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (25) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (13) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (7) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Brown Assay (5) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (66) Apply Neuroscience filter
  • Cancer (14) Apply Cancer filter
  • lncRNA (9) Apply lncRNA filter
  • Development (6) Apply Development filter
  • Metabolism (4) Apply Metabolism filter
  • behavioral (3) Apply behavioral filter
  • LncRNAs (3) Apply LncRNAs filter
  • Addiction (2) Apply Addiction filter
  • Behavior (2) Apply Behavior filter
  • Endocrinology (2) Apply Endocrinology filter
  • Exercise (2) Apply Exercise filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Sleep (2) Apply Sleep filter
  • Stem cell (2) Apply Stem cell filter
  • Albinism (1) Apply Albinism filter
  • Allergy Response (1) Apply Allergy Response filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism spectrum disorder (1) Apply Autism spectrum disorder filter
  • diabetes (1) Apply diabetes filter
  • Diabetic Kidney Disease (1) Apply Diabetic Kidney Disease filter
  • Feeding (1) Apply Feeding filter
  • Gender Bias (1) Apply Gender Bias filter
  • Gut Mirobiome (1) Apply Gut Mirobiome filter
  • Hunger (1) Apply Hunger filter
  • Infant directed behvaior (1) Apply Infant directed behvaior filter
  • Injury (1) Apply Injury filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Neuroscince (1) Apply Neuroscince filter
  • Opioid Consumption (1) Apply Opioid Consumption filter
  • Other: Behavior (1) Apply Other: Behavior filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Obesity (1) Apply Other: Obesity filter
  • Other: Skin (1) Apply Other: Skin filter
  • Other:: Eyes (1) Apply Other:: Eyes filter
  • Photoperiod (1) Apply Photoperiod filter
  • Psychology (1) Apply Psychology filter
  • Sickness Behaviors (1) Apply Sickness Behaviors filter
  • Social Trauma (1) Apply Social Trauma filter
  • Stress (1) Apply Stress filter
  • TNAs (1) Apply TNAs filter
  • vasopressin (1) Apply vasopressin filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • Publications (98) Apply Publications filter
Incubation of methamphetamine craving is associated with selective increases in expression of BDNF and trkb, glutamate receptors, and epigenetic enzymes in cue-activated fos-expressing dorsal striatal neurons.

J Neurosci. 2015 May 27;35(21):8232-44.

Li X, Rubio FJ, Zeric T, Bossert JM, Kambhampati S, Cates HM, Kennedy PJ, Liu QR, Cimbro R, Hope BT, Nestler EJ, Shaham Y.
PMID: 26016895 | DOI: 10.1038/jid.2015.200.

Cue-induced methamphetamine seeking progressively increases after withdrawal (incubation of methamphetamine craving), but the underlying mechanisms are largely unknown. We determined whether this incubation is associated with alterations in candidate genes in dorsal striatum (DS), a brain area implicated in cue- and context-induced drug relapse. We first measured mRNA expression of 24 candidate genes in whole DS extracts after short (2 d) or prolonged (1 month) withdrawal in rats following extended-access methamphetamine or saline (control condition) self-administration (9 h/d, 10 d). We found minimal changes. Next, using fluorescence-activated cell sorting, we compared gene expression in Fos-positive dorsal striatal neurons, which were activated during "incubated" cue-induced drug-seeking tests after prolonged withdrawal, with nonactivated Fos-negative neurons. We found significant increases in mRNA expression of immediate early genes (Arc, Egr1), Bdnf and its receptor (Trkb), glutamate receptor subunits (Gria1, Gria3, Grm1), and epigenetic enzymes (Hdac3, Hdac4, Hdac5, GLP, Dnmt3a, Kdm1a) in the Fos-positive neurons only. Using RNAscope to determine striatal subregion and cell-type specificity of the activated neurons, we measured colabeling of Fos with Drd1 and Drd2 in three DS subregions. Fos expression was neither subregion nor cell-type specific (52.5 and 39.2% of Fos expression colabeled with Drd1 and Drd2, respectively). Finally, we found that DS injections of SCH23390 (C17H18ClNO), a D1-family receptor antagonist known to block cue-induced Fos induction, decreased incubated cue-induced methamphetamine seeking after prolonged withdrawal. Results demonstrate a critical role of DS in incubation of methamphetamine craving and that this incubation is associated with selective gene-expression alterations in cue-activated D1- and D2-expressing DS neurons.
Changes in appetitive associative strength modulates nucleus accumbens, but not orbitofrontal cortex neuronal ensemble excitability.

J Neurosci.

2017 Feb 17

Ziminski J, Hessler S, Margetts-Smith G, Sieburg MC, Crombag HS, Koya E.
PMID: 28213443 | DOI: 10.1523/JNEUROSCI.3766-16.2017

Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, animals may adapt accordingly by inhibiting food seeking responses. Sparsely activated sets of neurons, coined neuronal ensembles, have been shown to encode the strength of reward-cue associations. While alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice following appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. Following extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENTSparsely distributed sets of neurons called 'neuronal ensembles' encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that occur specifically on neuronal ensembles that encode appetitive associations. Here we reveal that sucrose cue exposure recruited a more excitable ensemble in the nucleus accumbens, but not orbitofrontal cortex compared to their surrounding neurons. This excitability difference was not observed when the cue's salience was diminished following extinction learning. These novel data provide evidence that the intrinsic excitability of appetitive memory-encoding ensembles is differentially regulated across brain areas and dynamically adapts to changes in associative strength.

Single-cell transcriptome of the mouse retinal pigment epithelium in response to a low-dose of doxorubicin

Communications biology

2022 Jul 20

Lee, H;Lee, HY;Chae, JB;Park, CW;Kim, C;Ryu, JH;Jang, J;Kim, N;Chung, H;
PMID: 35859009 | DOI: 10.1038/s42003-022-03676-3

Cellular senescence of the retinal pigment epithelium (RPE) is thought to play an important role in vision-threatening retinal degenerative diseases, such as age-related macular degeneration (AMD). However, the single-cell RNA profiles of control RPE tissue and RPE tissue exhibiting cellular senescence are not well known. We have analyzed the single-cell transcriptomes of control mice and mice with low-dose doxorubicin (Dox)-induced RPE senescence (Dox-RPE). Our results have identified 4 main subpopulations in the control RPE that exhibit heterogeneous biological activities and play roles in ATP synthesis, cell mobility/differentiation, mRNA processing, and catalytic activity. In Dox-RPE mice, cellular senescence mainly occurs in the specific cluster, which has been characterized by catalytic activity in the control RPE. Furthermore, in the Dox-RPE mice, 6 genes that have not previously been associated with senescence also show altered expression in 4 clusters. Our results might serve as a useful reference for the study of control and senescent RPE.
Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure

Redox biology

2021 Aug 16

Scaffa, A;Yao, H;Oulhen, N;Wallace, J;Peterson, AL;Rizal, S;Ragavendran, A;Wessel, G;De Paepe, ME;Dennery, PA;
PMID: 34417156 | DOI: 10.1016/j.redox.2021.102091

Ventilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury. Using single-cell RNA sequencing, we mapped lung cell subpopulations at postnatal day (pnd)7 and pnd60 in mice exposed to hyperoxia (95% O2) for 3 days as neonates. We interrogated over 10,000 cells and identified a total of 45 clusters within 32 cell states. Neonatal hyperoxia caused persistent compositional changes in later life (pnd60) in all five type II cell states with unique signatures and function. Premature infants requiring mechanical ventilation with different durations also showed similar alterations in these unique signatures of type II cell states. Pathologically, neonatal hyperoxic exposure caused alveolar simplification in adult mice. We conclude that neonatal hyperoxia alters the lung cellular landscape in later life, uncovering neonatal programing of adult lung dysfunction.
MALAT1 Inhibits Proliferation of HPV16-Positive Cervical Cancer by Sponging miR-485-5p to Promote Expression of MAT2A

DNA and cell biology

2021 Oct 04

Tie, W;Ge, F;
PMID: 34610246 | DOI: 10.1089/dna.2020.6205

Cervical cancer is the leading cause of morbidity and mortality in women throughout the world, human papillomavirus 16 (HPV16) is the main type of HPV causing invasive cervical cancer. However, the underlying mechanism of the high carcinogenicity of HPV16 remains unclear. In the current study, we documented that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA, is upregulated in HPV16-positive cervical cancer tissue and cell lines. The results of immunohistochemistry and immunofluorescence showed that MALAT1 was mainly localized in the cytoplasm. To clarify the biological functions of MALAT1 in cervical cancer cells, we performed gain- and loss-of-function experiments to explore the underlying molecular mechanism. Functionally, the proliferation of cervical cancer was detected by Cell Counting Kit-8 (CCK-8) and colony formation assay in MALAT1 overexpression or knockdown cells, our data showed that MALAT1 promotes the proliferation of cervical cancer cells. Mechanistically, our results suggested that MALAT1 upregulates Methionine adenosyltransferase 2A (MAT2A) by sponging miR-485-5p. Moreover, the gain-of-function assay validated the function of MAT2A in HPV16-positive cervical cancer proliferation. Taken together, our results demonstrated that MALAT1 acts as a competitive endogenous RNA (ceRNA) to regulate MAT2A by sponging miR-485-5p in HPV16-positive cervical cancer, suggesting that MALAT1 may act as a potential therapeutic target for HPV16-positive cervical cancer.
Prelimbic cortex is a common brain area activated during cue‐induced reinstatement of cocaine and heroin seeking in a polydrug self‐administration rat model

Eur J Neurosci. 2018 Oct 11.

2018 Oct 11

Rubio FJ, Quintana-Feliciano R, Warren BL, Li X, Witonsky KFR, Soto Del Valle F, Selvam PV, Caprioli D, Venniro M, Bossert JM, Shaham Y, Hope BT.
PMID: 30307667 | DOI: 10.1111/ejn.14203

Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg/infusion, 3-h/d, 18 d) or heroin (0.03 mg/kg/infusion) on alternating days (9 d for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex (mPFC), dorsal striatum (DS), nucleus accumbens (NAc), and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells were similar for the heroin and cocaine cue-activated neurons. Overall the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.
Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice.

Pharmacology Biochemistry and Behavior

2019 May 02

Lewis MH, Rajpal H, Muehlmann AM.
PMID: - | DOI: 10.1016/j.pbb.2019.04.006

Repetitive behaviors are diagnostic for autism spectrum disorder (ASD) and commonly observed in other neurodevelopmental disorders. Currently, there are no effective pharmacological treatments for repetitive behavior in these clinical conditions. This is due to the lack of information about the specific neural circuitry that mediates the development and expression of repetitive behavior. Our previous work in mouse models has linked repetitive behavior to decreased activation of the subthalamic nucleus, a brain region in the indirect and hyperdirect pathways in the basal ganglia circuitry. The present experiments were designed to further test our hypothesis that pharmacological activation of the indirect pathway would reduce repetitive behavior. We used a combination of adenosine A1 and A2A receptor agonists that have been shown to alter the firing frequency of dorsal striatal neurons within the indirect pathway of the basal ganglia. This drug combination markedly and selectively reduced repetitive behavior in both male and female C58 mice over a six-hour period, an effect that required both A1 and A2A agonists as neither alone reduced repetitive behavior. The adenosine A1 and A2A receptor agonist combination also significantly increased the number of Fos transcripts and Fospositive cells in dorsal striatum. Fos induction was found in both direct and indirect pathway neurons suggesting that the drug combination restored the balance of activation across these complementary basal ganglia pathways. The adenosine A1 and A2A receptor agonist combination also maintained its effectiveness in reducing repetitive behavior over a 7-day period. These findings point to novel potential therapeutic targets for development of drug therapies for repetitive behavior in clinical disorders.

MALAT1 regulates miR-34a expression in melanoma cells.

Cell Death Dis.

2019 May 17

Li F, Li X, Qiao L, Liu W, Xu C, Wang X.
PMID: 31101802 | DOI: 10.1038/s41419-019-1620-3

Melanoma is one of the most common skin malignancies. Both microRNAs and long non-coding RNAs (lncRNAs) have critical roles in the progression of cancers, including melanoma. However, the underlying molecular mechanism has not been fully characterized. We demonstrated that miR-34a is negatively correlated with MALAT1 in melanoma cells and tumor specimens. Interestingly, MALAT1, which contains functional sequence-specific miR-34a-binding sites, regulates miR-34a stability in melanoma cells and in vivo. Importantly, MALAT1 was significantly enriched in the Ago2 complex, but not when the MALAT1-binding site of miR-34a was mutated. Furthermore, MALAT1 could be shown to regulate c-Myc and Met expression by functioning as a miR-34a sponge. Our results reveal an unexpected mode of action for MALAT1 as an important regulator of miR-34a.

Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of Methamphetamine Craving after Voluntary Abstinence.

J Neurosci.

2017 Jan 25

Caprioli D, Venniro M, Zhang M, Bossert JM, Warren BL, Hope BT, Shaham Y.
PMID: 28123032 | DOI: 10.1523/JNEUROSCI.3091-16.2017

Abstract

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation.

SIGNIFICANCE STATEMENT:

In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.

Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression

PloS one

2021 Dec 13

Bernanke, A;Burnette, E;Murphy, J;Hernandez, N;Zimmerman, S;Walker, QD;Wander, R;Sette, S;Reavis, Z;Francis, R;Armstrong, C;Risher, ML;Kuhn, C;
PMID: 34898621 | DOI: 10.1371/journal.pone.0260577

Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost ) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost (AB), acute LiCl (AL)] and the context-only task control (COT), Boost only task (BOT) and Boost -LiCl task (BLT). Acutely, females drank more Boost than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Longitudinal single-cell RNA-seq analysis reveals stress-promoted chemoresistance in metastatic ovarian cancer

Science advances

2022 Feb 25

Zhang, K;Erkan, EP;Jamalzadeh, S;Dai, J;Andersson, N;Kaipio, K;Lamminen, T;Mansuri, N;Huhtinen, K;Carpén, O;Hietanen, S;Oikkonen, J;Hynninen, J;Virtanen, A;Häkkinen, A;Hautaniemi, S;Vähärautio, A;
PMID: 35196078 | DOI: 10.1126/sciadv.abm1831

Chemotherapy resistance is a critical contributor to cancer mortality and thus an urgent unmet challenge in oncology. To characterize chemotherapy resistance processes in high-grade serous ovarian cancer, we prospectively collected tissue samples before and after chemotherapy and analyzed their transcriptomic profiles at a single-cell resolution. After removing patient-specific signals by a novel analysis approach, PRIMUS, we found a consistent increase in stress-associated cell state during chemotherapy, which was validated by RNA in situ hybridization and bulk RNA sequencing. The stress-associated state exists before chemotherapy, is subclonally enriched during the treatment, and associates with poor progression-free survival. Co-occurrence with an inflammatory cancer-associated fibroblast subtype in tumors implies that chemotherapy is associated with stress response in both cancer cells and stroma, driving a paracrine feed-forward loop. In summary, we have found a resistant state that integrates stromal signaling and subclonal evolution and offers targets to overcome chemotherapy resistance.
Kiss1 is differentially regulated in male and female mice by the homeodomain transcription factor VAX1

Molecular and cellular endocrinology

2021 Jun 04

Lavalle, SN;Chou, T;Hernandez, J;Naing, NCP;Tonsfeldt, KJ;Hoffmann, HM;Mellon, PL;
PMID: 34098016 | DOI: 10.1016/j.mce.2021.111358

Regulation of Kiss1 transcription is crucial to the development and function of the reproductive axis. The homeodomain transcription factor, ventral anterior homeobox 1 (VAX1), has been implicated as a potential regulator of Kiss1 transcription. However, it is unknown whether VAX1 directly mediates transcription within kisspeptin neurons or works indirectly by acting upstream of kisspeptin neuron populations. This study tested the hypothesis that VAX1 within kisspeptin neurons regulates Kiss1 gene expression. We found that VAX1 acts as a repressor of Kiss1 in vitro and within the male arcuate nucleus in vivo. In female mice, we found that the loss of VAX1 caused a reduction in Kiss1 expression and Kiss1-containing neurons in the anteroventral periventricular nucleus at the time of the preovulatory luteinizing hormone surge, but was compensated by an increase in Kiss1-cFos colocalization. Despite changes in Kiss1 transcription, gonadotropin levels were unaffected and there were no impairments to fertility.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?