ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Endocr Relat Cancer.
2018 Nov 06
Doroszko M, Chrusciel M, Stelmaszewska J, Slezak T, Anisimowicz S, Plöckinger U, Quinkler M, Bonomi M, Wolczynski S, Huhtaniemi I.
PMID: 30400009 | DOI: 10.1530/ERC-17-0399
Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
2021 Apr 01
Oduwole, OO;Poliandri, A;Okolo, A;Rawson, P;Doroszko, M;Chrusciel, M;Rahman, NA;Serrano de Almeida, G;Bevan, CL;Koechling, W;Huhtaniemi, IT;
PMID: 33724574 | DOI: 10.1096/fj.202002168RR
J Clin Endocrinol Metab.
2016 May 25
Ponikwicka-Tyszko D, Chrusciel M, Stelmaszewska J, Bernaczyk P, Sztachelska M, Sidorkiewicz I, Doroszko M, Tomaszewski J, Tapanainen J, Huhtaniemi I, Wolczynski S, Rahman NA.
PMID: 27224263 | DOI: -
FSH receptor (FSHR), besides being expressed in gonads, is also expressed in some extragonadal tissues at low levels.
We examined the functional expression of FSHR in different types of endometriotic lesions.
Extensive studies were carried out to detect functional FSHR expression and FSH-stimulated estrogen production in ovarian endometriomas and recto-vaginal endometriotic nodules (RVEN). Normal endometrium, ovary, and myometrium tissues from nonpregnant cycling women served as controls.
This laboratory-based study was carried out on tissue specimens from patients with endometriosis and healthy donors.
Endometriotic lesions and normal secretory-phase endometrium showed FSHR expression at both mRNA and protein level. RVEN and ovarian endometrioma demonstrated up-regulated CYP19A1, dependent on the activation of CYP19A1 proximal promoter II. Estrogen receptor-β (ESR2) expression was significantly increased in RVEN vs normal endometrium. Recombinant human FSH stimulation of RVEN explants significantly increased estradiol production and CYP19A1 and ESR2 expression. FSHR was up-regulated in recombinant human FSH-stimulated endometrial and decidualized stromal cells with increased CYP19A1 expression.
We described a novel functional FSHR expression, where FSH-stimulated CYP19A1 expression and estrogen production in RVEN are demonstrated. This locally FSH-induced estrogen production may contribute to the pathology, development, progression, and severity of RVEN.
Sci Rep.
2016 Nov 16
Stelmaszewska J, Chrusciel M, Doroszko M, Akerfelt M, Ponikwicka-Tyszko D, Nees M, Frentsch M, Li X, Kero J, Huhtaniemi I, Wolczynski S, Rahman NA.
PMID: 27848975 | DOI: 10.1038/srep37095
Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs.
Annals of the New York Academy of Sciences
2023 May 18
Kannangara, H;Cullen, L;Miyashita, S;Korkmaz, F;Macdonald, A;Gumerova, A;Witztum, R;Moldavski, O;Sims, S;Burgess, J;Frolinger, T;Latif, R;Ginzburg, Y;Lizneva, D;Goosens, K;Davies, TF;Yuen, T;Zaidi, M;Ryu, V;
PMID: 37199228 | DOI: 10.1111/nyas.15009
Nature
2022 Mar 01
Xiong, J;Kang, SS;Wang, Z;Liu, X;Kuo, TC;Korkmaz, F;Padilla, A;Miyashita, S;Chan, P;Zhang, Z;Katsel, P;Burgess, J;Gumerova, A;Ievleva, K;Sant, D;Yu, SP;Muradova, V;Frolinger, T;Lizneva, D;Iqbal, J;Goosens, KA;Gera, S;Rosen, CJ;Haroutunian, V;Ryu, V;Yuen, T;Zaidi, M;Ye, K;
PMID: 35236988 | DOI: 10.2139/ssrn.4058695
Endocrinology and metabolism (Seoul, Korea)
2022 Oct 01
Kim, SM;Sultana, F;Korkmaz, F;Lizneva, D;Yuen, T;Zaidi, M;
PMID: 36168775 | DOI: 10.3803/EnM.2022.1573
Nature communications
2023 Feb 25
Qiao, S;Alasmi, S;Wyatt, A;Wartenberg, P;Wang, H;Candlish, M;Das, D;Aoki, M;Grünewald, R;Zhou, Z;Tian, Q;Yu, Q;Götz, V;Belkacemi, A;Raza, A;Ectors, F;Kattler, K;Gasparoni, G;Walter, J;Lipp, P;Mollard, P;Bernard, DJ;Karatayli, E;Karatayli, SC;Lammert, F;Boehm, U;
PMID: 36841874 | DOI: 10.1038/s41467-023-36681-z
J. Clin. Investig
2018 Mar 26
Oduwole OO, Peltoketo H, Poliandri A, Vengadabady L, Chrusciel M, Doroszko M, Samanta L, Owen L, Keevil B, Rahman NA, Huhtaniemi IT.
PMID: 29584617 | DOI: 10.1172/JCI96794
Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr-/- mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com