Vet Immunol Immunopathol.
McGill JL, Sacco RE.
PMID: 26923879 | DOI: 10.1016/j.vetimm.2016.02.012
γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.
Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316
Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Feigin, CY;Moreno, JA;Ramos, R;Mereby, SA;Alivisatos, A;Wang, W;van Amerongen, R;Camacho, J;Rasweiler, JJ;Behringer, RR;Ostrow, B;Plikus, MV;Mallarino, R;
PMID: 36961889 | DOI: 10.1126/sciadv.ade7511
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Arteriosclerosis, thrombosis, and vascular biology
Owsiany, KM;Deaton, RA;Soohoo, KG;Tram Nguyen, A;Owens, GK;
PMID: 35735018 | DOI: 10.1161/ATVBAHA.122.317882
Smooth muscle cells (SMCs) in atherosclerotic plaque take on multiple nonclassical phenotypes that may affect plaque stability and, therefore, the likelihood of myocardial infarction or stroke. However, the mechanisms by which these cells affect stability are only beginning to be explored.In this study, we investigated the contribution of inflammatory MCP1 (monocyte chemoattractant protein 1) produced by both classical Myh11 (myosin heavy chain 11)+ SMCs and SMCs that have transitioned through an Lgals3 (galectin 3)+ state in atherosclerosis using smooth muscle lineage tracing mice that label all Myh11+ cells and a dual lineage tracing system that targets Lgals3-transitioned SMC only.We show that loss of MCP1 in all Myh11+ smooth muscle results in a paradoxical increase in plaque size and macrophage content, driven by a baseline systemic monocytosis early in atherosclerosis pathogenesis. In contrast, knockout of MCP1 in Lgals3-transitioned SMCs using a complex dual lineage tracing system resulted in lesions with an increased Acta2 (actin alpha 2, smooth muscle)+ fibrous cap and decreased investment of Lgals3-transitioned SMCs, consistent with increased plaque stability. Finally, using flow cytometry and single-cell RNA sequencing, we show that MCP1 produced by Lgals3-transitioned SMCs influences multiple populations of inflammatory cells in late-stage plaques.MCP1 produced by classical SMCs influences monocyte levels beginning early in disease and was atheroprotective, while MCP1 produced by the Lgals3-transitioned subset of SMCs exacerbated plaque pathogenesis in late-stage disease. Results are the first to determine the function of Lgals3-transitioned inflammatory SMCs in atherosclerosis and highlight the need for caution when considering therapeutic interventions involving MCP1.
Nat Commun. 2018 Nov 30;9(1):5083.
Pinho AV, Van Bulck M, Chantrill L, Arshi M, Sklyarova T, Herrmann D, Vennin C, Gallego-Ortega D, Mawson A, Giry-Laterriere M, Magenau A, Leuckx G, Baeyens L, Gill AJ, Phillips P, Timpson P, Biankin AV, Wu J, Rooman I.
PMID: 30504844 | DOI: 10.1038/s41467-018-07497-z
Whereas genomic aberrations in the SLIT-ROBO pathway are frequent in pancreatic ductal adenocarcinoma (PDAC), their function in the pancreas is unclear. Here we report that in pancreatitis and PDAC mouse models, epithelial Robo2 expression is lost while Robo1 expression becomes most prominent in the stroma. Cell cultures of mice with loss of epithelial Robo2 (Pdx1Cre;Robo2F/F) show increased activation of Robo1+ myofibroblasts and induction of TGF-β and Wnt pathways. During pancreatitis, Pdx1Cre;Robo2F/F mice present enhanced myofibroblast activation, collagen crosslinking, T-cell infiltration and tumorigenic immune markers. The TGF-β inhibitor galunisertib suppresses these effects. In PDAC patients, ROBO2 expression is overall low while ROBO1 is variably expressed in epithelium and high in stroma. ROBO2low;ROBO1high patients present the poorest survival. In conclusion, Robo2 acts non-autonomously as a stroma suppressor gene by restraining myofibroblast activation and T-cell infiltration. ROBO1/2 expression in PDAC patients may guide therapy with TGF-β inhibitors or other stroma /immune modulating agents.
DETERMINATION OF SINGLE NUCLEOTIDE POLYMORPHISM (RS566926) OF WNT5A IN NONSYNDROMIC CLEFT LIP AND PALATE IN A PAKISTANI POPULATION
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology
Anjum, R;Mehmood, S;Nagi, A;Shahzad, M;Chuadhry, S;
| DOI: 10.1016/j.oooo.2021.03.042
Background Orofacial clefts are the most common birth defects affecting 1 in 750 live births worldwide. Various genetic loci to be involved in nonsyndromic cleft lip and palate has been identified with a variation among populations. Wnt5a is expressed in the frontonasal prominence and maxillary process, which fuse to form the primary palate. Therefore, its dysregulation can lead to certain birth defects along with other diseases. Single nucleotide polymorphism (rs566926) in Wnt5A shows a significant association with nonsyndromic cleft lip and palate in Brazilian and European American populations. Objective The aim of the present study was to describe single nucleotide polymorphism (SNP; rs566926) in patients with nonsyndromic cleft lip and palate in a Pakistani population. Methods This study was conducted on 120 patients with nonsyndromic cleft lip and palate. Demographics and phenotypes were noted. Blood samples were collected in ethylenediaminetetraacetic acid vials. DNA was extracted followed by conventional polymerase chain reaction. SNP (566926) was determined by Sanger sequencing. Data were analyzed using NCBI Blast and SPSS (24.0). Results The mean age of n = 30 patients was 51.33 ± 61.33 months. Sixty percent were male and 40% were female. Regarding cleft types, 70% were both cleft lip and palate, 26% cleft lip only, and 3.3% cleft palate only. Heterozygous polymorphism (T/G) was seen in 33.3% of patients with both cleft lip and palate with bilateral involvement and heterozygous polymorphism (T) was seen in 16.6%. Conclusions SNP in the WNT5A gene is associated with cleft lip and palate, supporting its involvement in pathogenesis of cleft lip and palate. Further studies are recommended to determine the role of Wnt5a genes during craniofacial development.
Mizutani M, Wu JC, Nusse R.
PMID: - | DOI: 10.1161/JAHA.115.002457
Background The adult mammalian heart responds to cardiac injury by formation of persistent fibrotic scar that eventually leads to heart failure. In contrast, the neonatal mammalian heart reacts to injury by the development of transient fibrotic tissue that is eventually replaced by regenerated cardiomyocytes. How fibrosis occurs in the neonatal mammalian heart remains unknown. To start elucidating the molecular underpinnings of neonatal cardiac fibrosis, we investigated Wnt signaling in the neonatal heart after cryoinjury.
Methods and Results Using expression of the Wnt target gene Axin2 as an indicator of Wnt/β‐catenin signaling activation, we discovered that epicardial cells in the ventricles are responsive to Wnt in the uninjured neonatal heart. Lineage‐tracing studies of these Wnt‐responsive epicardial cells showed that they undergo epithelial‐to‐mesenchymal transition and infiltrate into the subepicardial space and exhibit fibroblast phenotypes after injury. In addition, we showed that—similar to adult ischemic injury—neonatal cryoinjury results in activation of Wnt signaling in cardiac fibroblasts near injured areas. Furthermore, through in situ hybridization of all 19 Wnt ligands in injured neonatal hearts, we observed upregulation of Wnt ligands (Wnt2b, Wnt5a, and Wnt9a) that had not been implicated in the adult cardiac injury response.
Conclusions These results demonstrate that cryoinjury in neonatal heart leads to the formation of fibrotic tissue that involves Wnt‐responsive epicardial cells undergoing epithelial‐to‐mesenchymal transition to give rise to fibroblasts and activation of Wnt signaling in resident cardiac fibroblasts.
WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility
Development (Cambridge, England)
Habara, O;Logan, CY;Kanai-Azuma, M;Nusse, R;Takase, HM;
PMID: 33914868 | DOI: 10.1242/dev.198846
In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of β-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.
Fluids and barriers of the CNS
Errede, M;Annese, T;Petrosino, V;Longo, G;Girolamo, F;de Trizio, I;d'Amati, A;Uccelli, A;Kerlero de Rosbo, N;Virgintino, D;
PMID: 36042496 | DOI: 10.1186/s12987-022-00365-5
In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood-brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage.The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2.The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression.This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications.
Cellular and molecular gastroenterology and hepatology
Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015
Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFH, de Visser KE.
PMID: - | DOI: 10.1080/2162402X.2017.1334744
Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.
Rehman, R;Miller, M;Krishnamurthy, SS;Kjell, J;Elsayed, L;Hauck, SM;Olde Heuvel, F;Conquest, A;Chandrasekar, A;Ludolph, A;Boeckers, T;Mulaw, MA;Goetz, M;Morganti-Kossmann, MC;Takeoka, A;Roselli, F;
PMID: 36577378 | DOI: 10.1016/j.celrep.2022.111867
The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature. Both acute and prolonged Met/HGFR inhibition ameliorate neuronal survival and motor recovery. Early elevation of HGF itself in the cerebrospinal fluid of TBI patients suggests that this mechanism has translational value in human subjects. Our findings identify Met/HGFR as a modulator of early neuroinflammation in TBI with promising translational potential.