Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1495)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • (-) Remove FOS filter FOS (73)
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (229) Apply RNAscope filter
  • TBD (149) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (62) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (36) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (12) Apply RNAscope Multiplex Fluorescent v2 filter
  • Basescope (11) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (10) Apply RNAscope 2.5 HD Brown Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (6) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (199) Apply Neuroscience filter
  • Cancer (111) Apply Cancer filter
  • Development (59) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Metabolism (10) Apply Metabolism filter
  • Other: Metabolism (10) Apply Other: Metabolism filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Stem cell (8) Apply Stem cell filter
  • Endocrinology (7) Apply Endocrinology filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Other (5) Apply Other filter
  • Other: Skin (5) Apply Other: Skin filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Behavior (4) Apply Behavior filter
  • behavioral (4) Apply behavioral filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Stress (4) Apply Stress filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • Bone (3) Apply Bone filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Lung (3) Apply Lung filter
  • Memory (3) Apply Memory filter
  • Other: Cell Biology (3) Apply Other: Cell Biology filter
  • Other: Endocrinology (3) Apply Other: Endocrinology filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Regeneration (3) Apply Regeneration filter
  • Skin (3) Apply Skin filter
  • Sleep (3) Apply Sleep filter

Category

  • Publications (1495) Apply Publications filter
Antiviral Activities of Carbazole Derivatives against Porcine Epidemic Diarrhea Virus In Vitro

Viruses

2021 Dec 16

Chen, Z;Chen, J;Wei, X;Hua, H;Hu, R;Ding, N;Zhang, J;Song, D;Ye, Y;Tang, Y;Ding, Z;Ke, S;
PMID: 34960796 | DOI: 10.3390/v13122527

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives. Eighteen carbazole derivatives (No.1 to No.18) were synthesized, and No.5, No.7, and No.18 were identified to markedly reduce the replication of enhanced green fluorescent protein (EGFP) inserted-PEDV, and the mRNA level of PEDV N. Flow cytometry assay, coupled with CCK8 assay, confirmed No.7 and No.18 carbazole derivatives displayed high inhibition effects with low cell toxicity. Furthermore, time course analysis indicated No.7 and No.18 carbazole derivatives exerted inhibition at the early stage of the viral life cycle. Collectively, the analysis underlines the benefit of carbazole derivatives as potential inhibitors of PEDV, and provides candidates for the development of novel therapeutic agents.
Tissue architecture delineates field cancerization in BRAFV600E-induced tumor development

Disease models & mechanisms

2021 Jun 04

Schoultz, E;Johansson, E;Moccia, C;Jakubikova, I;Ravi, N;Liang, S;Carlsson, T;Montelius, M;Patyra, K;Kero, J;Paulsson, K;Fagman, H;Bergo, MO;Nilsson, M;
PMID: 34085700 | DOI: 10.1242/dmm.048887

Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAFV600E from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky CRE activity revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor type. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent, and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The sporadic thyroid cancer model provides a new tool to evaluate drug therapy at different stages of tumor evolution.
The Anterior Insular Cortex--> Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management

Neuron

2017 Oct 11

Venniro M, Caprioli D, Zhang M, Whitaker LR, Zhang S, Warren BL, Cifani C, Marchant NJ, Yizhar O, Bossert JM, Chiamulera C, Morales M, Shaham Y.
PMID: 29024664 | DOI: 10.1016/j.neuron.2017.09.024

Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention.

A Procedure for Mouse Dorsal Root Ganglion Cryosectioning

jove.com

2023 Jan 01

He, L;Zhao, W;Zhang, L;Ilango, M;Zhao, N;Yang, L;Guan, Z;

High-quality mouse dorsal root ganglion (DRG) cryostat sections are crucial for proper immunochemistry staining and RNAscope studies in the research of inflammatory and neuropathic pain, itch, as well as other peripheral neurological conditions. However, it remains a challenge to consistently obtain high-quality, intact, and flat cryostat sections onto glass slides because of the tiny sample size of the DRG tissue. So far, there is no article describing an optimal protocol for DRG cryosectioning. This protocol presents a step-by-step method to resolve the frequently encountered difficulties associated with DRG cryosectioning. The presented article explains how to remove the surrounding liquid from the DRG tissue samples, place the DRG sections on the slide facing the same orientation, and flatten the sections on the glass slide without curving up. Although this protocol has been developed for cryosectioning the DRG samples, it can be applied for the cryosectioning of many other tissues with a small sample size.
Dual blockages of a broad and potent neutralizing IgM antibody targeting GH loop of EV-As

Immunology

2023 Feb 01

Zhu, W;Li, J;Wu, Z;Li, H;Zhang, Z;Zhu, X;Sun, M;Dong, S;
PMID: 36726218 | DOI: 10.1111/imm.13629

The reported enterovirus A 71 (EVA71) vaccines and immunoglobin G (IgG) antibodies have no cross-antiviral efficacy against other enterovirus A (EV-A) which caused hand, foot and mouth disease (HFMD). Here we constructed an IgM antibody (20-IgM) based on our previous discovery to address the resistance encountered by IgG-based immunotherapy. Although binding to the same conserved neutralizing epitope within the GH loop of EV-As VP1, the antiviral breath and potency of 20-IgM are still higher than its parental 20-IgG1. The 20-IgM blocks the interaction between the EV-As and its receptors, scavenger receptor class B, member 2 (SCARB2) and Kringle-containing transmembrane protein 1(KREMEN1) of the host cell. The 20-IgM also neutralizes the EV-As at the post-attachment stages, including postattachment neutralization, uncoating and RNA release inhibition after internalization. Mechanistically, the dual blockage effect of 20-IgM is dependent on both a conserved site targeting and high affinity binding. Meanwhile, 20-IgM provides cross-antiviral efficacy in EV-As orally infected neonatal ICR mice. Collectively, 20-IgM and its property exhibit excellent antiviral activity with a dual-blockage inhibitory effect at both the pre- and post-attachment stages. The finding enhances our understanding of IgM-mediated immunity and highlights the potential of IgM subtype antibodies against enterovirus infections.
OME-Zarr: a cloud-optimized bioimaging file format with international community support

bioRxiv : the preprint server for biology

2023 Feb 25

Moore, J;Basurto-Lozada, D;Besson, S;Bogovic, J;Brown, EM;Burel, JM;de Medeiros, G;Diel, EE;Gault, D;Ghosh, SS;Gold, I;Halchenko, YO;Hartley, M;Horsfall, D;Keller, MS;Kittisopikul, M;Kovacs, G;Küpcü Yoldaş, A;de la Villegeorges, ALT;Li, T;Liberali, P;Linkert, M;Lindner, D;Lüthi, J;Maitin-Shepard, J;Manz, T;McCormick, M;Mohamed, K;Moore, W;Özdemir, B;Pape, C;Pelkmans, L;Prete, M;Pietzsch, T;Preibisch, S;Rzepka, N;Stirling, DR;Striebel, J;Tischer, C;Toloudis, D;Walczysko, P;Watson, AM;Wong, F;Yamauchi, KA;Bayraktar, O;Haniffa, M;Saalfeld, S;Swedlow, JR;
PMID: 36865282 | DOI: 10.1101/2023.02.17.528834

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the format itself - OME-Zarr - along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain - the file format that underlies so many personal, institutional, and global data management and analysis tasks.
Anatomical contacts between sensory neurons and epidermal cells: an unrecognized anatomical network for neuro-immuno-cutaneous crosstalk

British Journal of Dermatology

2022 Jan 01

Talagas, M;
| DOI: 10.1093/bjd/ljac066/6788796

Sensory neurons innervating the skin are conventionally thought to be the sole transducers of 3 touch, temperature, pain, and itch. However, recent studies have shown that keratinocytes - like 4 Merkel cells - act as sensory transducers, whether for innocuous or noxious mechanical, thermal, 5 or chemical stimuli and communicate with intra-epidermal free nerve endings via chemical 6 synaptic contacts. This paradigm shift leads to the consideration of the whole epidermis as a 7 sensory epithelium. Sensory neurons additionally function as an efferent system. Through the 8 release of neuropeptides in intimate neuro-epidermal contact areas, they contribute to epidermal 9 homeostasis and to the pathogenesis of inflammatory skin diseases. To counteract the dogma 10 regarding neuro-cutaneous interactions, seen exclusively from the perspective of soluble and 11 spreading mediators, this review highlights the essential contribution of the unrecognized 12 anatomical contacts between the sensory neurons and the epidermal cells (keratinocytes, 13 melanocytes, Langerhans cells, and Merkel cells) which serve the reciprocal dialogue between 14 the skin, nervous system, and immune system.
Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis

Developmental cell

2022 Mar 14

Vignes, H;Vagena-Pantoula, C;Prakash, M;Fukui, H;Norden, C;Mochizuki, N;Jug, F;Vermot, J;
PMID: 35245444 | DOI: 10.1016/j.devcel.2022.02.011

Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.
The spatial transcriptomic landscape of the healing mouse intestine following damage

Nature communications

2022 Feb 11

Parigi, SM;Larsson, L;Das, S;Ramirez Flores, RO;Frede, A;Tripathi, KP;Diaz, OE;Selin, K;Morales, RA;Luo, X;Monasterio, G;Engblom, C;Gagliani, N;Saez-Rodriguez, J;Lundeberg, J;Villablanca, EJ;
PMID: 35149721 | DOI: 10.1038/s41467-022-28497-0

The intestinal barrier is composed of a complex cell network defining highly compartmentalized and specialized structures. Here, we use spatial transcriptomics to define how the transcriptomic landscape is spatially organized in the steady state and healing murine colon. At steady state conditions, we demonstrate a previously unappreciated molecular regionalization of the colon, which dramatically changes during mucosal healing. Here, we identified spatially-organized transcriptional programs defining compartmentalized mucosal healing, and regions with dominant wired pathways. Furthermore, we showed that decreased p53 activation defined areas with increased presence of proliferating epithelial stem cells. Finally, we mapped transcriptomics modules associated with human diseases demonstrating the translational potential of our dataset. Overall, we provide a publicly available resource defining principles of transcriptomic regionalization of the colon during mucosal healing and a framework to develop and progress further hypotheses.
SRSF1 governs progenitor-specific alternative splicing to maintain adult epithelial tissue homeostasis and renewal

Developmental cell

2022 Feb 22

Yu, T;Cazares, O;Tang, AD;Kim, HY;Wald, T;Verma, A;Liu, Q;Barcellos-Hoff, MH;Floor, SN;Jung, HS;Brooks, AN;Klein, OD;
PMID: 35202586 | DOI: 10.1016/j.devcel.2022.01.011

Alternative splicing generates distinct mRNA variants and is essential for development, homeostasis, and renewal. Proteins of the serine/arginine (SR)-rich splicing factor family are major splicing regulators that are broadly required for organ development as well as cell and organism viability. However, how these proteins support adult organ function remains largely unknown. Here, we used the continuously growing mouse incisor as a model to dissect the functions of the prototypical SR family protein SRSF1 during tissue homeostasis and renewal. We identified an SRSF1-governed alternative splicing network that is specifically required for dental proliferation and survival of progenitors but dispensable for the viability of differentiated cells. We also observed a similar progenitor-specific role of SRSF1 in the small intestinal epithelium, indicating a conserved function of SRSF1 across adult epithelial tissues. Thus, our findings define a regulatory mechanism by which SRSF1 specifically controls progenitor-specific alternative splicing events to support adult tissue homeostasis and renewal.
Structure-Based Design of a Chemical Probe Set for the 5-HT5A Serotonin Receptor

Journal of medicinal chemistry

2022 Feb 23

Levit Kaplan, A;Strachan, RT;Braz, JM;Craik, V;Slocum, S;Mangano, T;Amabo, V;O'Donnell, H;Lak, P;Basbaum, AI;Roth, BL;Shoichet, BK;
PMID: 35195401 | DOI: 10.1021/acs.jmedchem.1c02031

The 5-HT5A receptor (5-HT5AR), for which no selective agonists and a few antagonists exist, remains the least understood serotonin receptor. A single commercial antagonist, SB-699551, has been widely used to investigate the 5-HT5AR function in neurological disorders, including pain, but this molecule has substantial liabilities as a chemical probe. Accordingly, we sought to develop an internally controlled probe set. Docking over 6 million molecules against a 5-HT5AR homology model identified 5 mid-μM ligands, one of which was optimized to UCSF678, a 42 nM arrestin-biased partial agonist at the 5-HT5AR with a more restricted off-target profile and decreased assay liabilities versus SB-699551. Site-directed mutagenesis supported the docked pose of UCSF678. Surprisingly, analogs of UCSF678 that lost the 5-HT5AR activity revealed that 5-HT5AR engagement is nonessential for alleviating pain, contrary to studies with less-selective ligands. UCSF678 and analogs constitute a selective probe set with which to study the function of the 5-HT5AR.
Towards Tabula Gallus

International journal of molecular sciences

2022 Jan 06

Yamagata, M;
PMID: 35054796 | DOI: 10.3390/ijms23020613

The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.

Pages

  • « first
  • ‹ previous
  • …
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?