Hwang, E;Scarlett, JM;Baquero, AF;Bennett, C;Dong, Y;Chau, D;Brown, JM;Mercer, AJ;Meek, TH;Grove, KL;Phan, BAN;Morton, GJ;Williams, KW;Schwartz, MW;
PMID: 35917179 | DOI: 10.1172/jci.insight.160891
In rodent models of type 2 diabetes (T2D), central administration of fibroblast growth factor 1 (FGF1) normalizes elevated blood glucose levels in a manner that is sustained for weeks or months. Increased activity of NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) is implicated in the pathogenesis of hyperglycemia in these animals, and the ARC is a key brain area for the antidiabetic action of FGF1. We therefore sought to determine whether FGF1 inhibits NPY/AgRP neurons, and if so whether this inhibitory effect is sufficiently durable to offer a feasible explanation for sustained diabetes remission induced by central administration of FGF1. Here we show that FGF1 inhibits ARC NPY/AgRP neuron activity, both after icv injection in vivo and when applied ex vivo in a slice preparation, and that the underlying mechanism involves increased input from presynaptic GABAergic neurons. Following central administration, the inhibitory effect of FGF1 on NPY/AgRP neurons is also highly durable, lasting for at least two weeks. To our knowledge, no precedent for such a prolonged inhibitory effect exists. Future studies are warranted to determine whether NPY/AgRP neuron inhibition contributes to the sustained antidiabetic action elicited by icv FGF1 injection in rodent models of T2D. .
Short, C;Zhong, A;Xu, J;Mahdi, E;Glazier, A;Malkoff, N;
| DOI: 10.1097/HEP.0000000000000026
The experimental mouse model of BA mediated by perinatal rhesus rotavirus (RRV) infection resulted in increased co-expression of _Fn14_ in _Prom1_-expressing HPCs within regions of ductular reactions. FN14 antagonist L524-0366 decreased ductular reactions, biliary fibrosis and periportal fibroblast activation in RRV injury. L524-0366 inhibition also demonstrated loss of downstream non-canonical NF-kB signaling expression in RRV injury. Murine HPC organoids demonstrated accelerated organoid growth and proliferation when treated with recombinant TWEAK. Increased organoid proliferation with recombinant TWEAK was lost when also treated with L524-0366. Analysis of a large publicly available RNA-seq database of BA and normal control patients revealed significant increases in expression of _PROM1_, _FN14_, and genes downstream of TNF signaling and non-canonical NF-kB signaling pathways in BA infants. Infants who failed to achieve bile drainage after hepatoportoenterostomy had higher relative levels of _FN14_ expression.
Current oncology (Toronto, Ont.)
Boudin, L;Morvan, JB;Thariat, J;Métivier, D;Marcy, PY;Delarbre, D;
PMID: 36290887 | DOI: 10.3390/curroncol29100610
Anaplastic thyroid carcinoma (ATC) are highly aggressive malignant tumors with poor overall prognosis despite multimodal therapy. As ATC are extremely rare, no randomized controlled study has been published for metastatic disease. Thyrosine kinase inhibitors, especially lenvatinib and immune checkpoint inhibitors such as pembrolizumab, are emerging drugs for ATC. Few studies have reported the efficacity of pembrolizumab and lenvatinib association, resulting in its frequent off-label use. In this review, we discuss rationale efficacy and safety evidence for the association of lenvatinib and pembrolizumab in ATC. First, we discuss preclinical rationale for pembrolizumab monotherapy, lenvatinib monotherapy and synergistic action of pembrolizumab and lenvatinib in the metastatic setting. We also discuss clinical evidence for immunotherapy and pembrolizumab in ATC through the analysis of studies evaluating immunotherapy, lenvatinib and pembrolizumab lenvatinib association in ATC. In addition, we discuss the safety of this association and potential predictive biomarkers of efficiency.
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale
Frontiers in endocrinology
Adam, P;Kircher, S;Sbiera, I;Koehler, VF;Berg, E;Knösel, T;Sandner, B;Fenske, WK;Bläker, H;Smaxwil, C;Zielke, A;Sipos, B;Allelein, S;Schott, M;Dierks, C;Spitzweg, C;Fassnacht, M;Kroiss, M;
PMID: 34475850 | DOI: 10.3389/fendo.2021.712107
Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising.Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable.PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.
Hepatology communications
Zhong, A;Short, C;Xu, J;Fernandez, GE;Malkoff, N;Noriega, N;Yeo, T;Wang, L;Mavila, N;Asahina, K;Wang, KS;
PMID: 36662671 | DOI: 10.1097/HC9.0000000000000018
Restitution of the extrahepatic biliary luminal epithelium in cholangiopathies is poorly understood. Prominin-1 (Prom1) is a key component of epithelial ciliary body of stem/progenitor cells. Given that intrahepatic Prom1-expressing progenitor cells undergo cholangiocyte differentiation, we hypothesized that Prom1 may promote restitution of the extrahepatic bile duct (EHBD) epithelium following injury.Utilizing various murine biliary injury models, we identified Prom1-expressing cells in the peribiliary glands of the EHBD. These Prom1-expressing cells are progenitor cells which give rise to cholangiocytes as part of the normal maintenance of the EHBD epithelium. Following injury, these cells proliferate significantly more rapidly to re-populate the biliary luminal epithelium. Null mutation of Prom1 leads to significantly >10-fold dilated peribiliary glands following rhesus rotavirus-mediated biliary injury. Cultured organoids derived from Prom1 knockout mice are comprised of biliary progenitor cells with altered apical-basal cellular polarity, significantly fewer and shorter cilia, and decreased organoid proliferation dynamics consistent with impaired cell motility.We, therefore, conclude that Prom1 is involved in biliary epithelial restitution following biliary injury in part through its role in supporting cell polarity.
Peng, J;Li, F;Wang, J;Wang, C;Jiang, Y;Liu, B;He, J;Yuan, K;Pan, C;Lin, M;Zhou, B;Chen, L;Gao, D;Zhao, Y;
PMID: 36316325 | DOI: 10.1038/s41421-022-00474-3
In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.