Ding, CY;Ding, YT;Ji, H;Wang, YY;Zhang, X;Yin, DM;
PMID: 37147705 | DOI: 10.1186/s13578-023-01032-4
Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed.Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated.In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum.Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Progress in neuro-psychopharmacology & biological psychiatry
Chang, GQ;Yasmin, N;Collier, AD;Karatayev, O;Khalizova, N;Onoichenco, A;Fam, M;Albeg, AS;Campbell, S;Leibowitz, SF;
PMID: 35176416 | DOI: 10.1016/j.pnpbp.2022.110536
Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 μg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.
Gaitonde, KD;Andrabi, M;Burger, CA;D'Souza, SP;Vemaraju, S;Koritala, BSC;Smith, DF;Lang, RA;
PMID: 37141220 | DOI: 10.1371/journal.pone.0284824
Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli. Because Ptger3, Opn5, and Tacr3 encode G-protein coupled receptors (GPCRs), we hypothesized that elucidating the G-protein signaling in these neurons is essential to understanding the interplay of inputs in the regulation of metabolism. Here, we describe how the stimulatory Gs-alpha subunit (Gnas) in QPLOT neurons regulates metabolism in mice. We analyzed Opn5cre; Gnasfl/fl mice using indirect calorimetry at ambient temperatures of 22°C (a historical standard), 10°C (a cold challenge), and 28°C (thermoneutrality) to assess the ability of QPLOT neurons to regulate metabolism. We observed a marked decrease in nocturnal locomotion of Opn5cre; Gnasfl/fl mice at both 28°C and 22°C, but no overall differences in energy expenditure, respiratory exchange, or food and water consumption. To analyze daily rhythmic patterns of metabolism, we assessed circadian parameters including amplitude, phase, and MESOR. Loss-of-function GNAS in QPLOT neurons resulted in several subtle rhythmic changes in multiple metabolic parameters. We observed that Opn5cre; Gnasfl/fl mice show a higher rhythm-adjusted mean energy expenditure at 22°C and 10°C, and an exaggerated respiratory exchange shift with temperature. At 28°C, Opn5cre; Gnasfl/fl mice have a significant delay in the phase of energy expenditure and respiratory exchange. Rhythmic analysis also showed limited increases in rhythm-adjusted means of food and water intake at 22°C and 28°C. Together, these data advance our understanding of Gαs-signaling in preoptic QPLOT neurons in regulating daily patterns of metabolism.
Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity
Xiao, X;Yeghiazaryan, G;Hess, S;Klemm, P;Sieben, A;Kleinridders, A;Morgan, DA;Wunderlich, FT;Rahmouni, K;Kong, D;Scammell, TE;Lowell, BB;Kloppenburg, P;Brüning, JC;Hausen, AC;
PMID: 34475397 | DOI: 10.1038/s41467-021-25380-2
The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here we show orexin receptor type 1 and 2 are predominantly expressed in dorsal raphe nucleus-dorsal and -ventral, respectively. Serotonergic neurons in ventral median raphe nucleus and raphe pallidus selectively express orexin receptor type 1. Inactivation of orexin receptor type 1 in serotonin transporter-expressing cells of mice reduced insulin sensitivity in diet-induced obesity, mainly by decreasing glucose utilization in brown adipose tissue and skeletal muscle. Selective inactivation of orexin receptor type 2 improved glucose tolerance and insulin sensitivity in obese mice, mainly through a decrease in hepatic gluconeogenesis. Optogenetic activation of orexin neurons in lateral hypothalamus or orexinergic fibers innervating raphe pallidus impaired or improved glucose tolerance, respectively. Collectively, the present study assigns orexin signaling in serotonergic neurons critical, yet differential orexin receptor type 1- and 2-dependent functions in the regulation of systemic glucose homeostasis.
Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain
Journal of neuroscience research
Cooper, AH;Hedden, NS;Corder, G;Lamerand, SR;Donahue, RR;Morales-Medina, JC;Selan, L;Prasoon, P;Taylor, BK;
PMID: 33957003 | DOI: 10.1002/jnr.24846
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Pathobiology. 2015 Jun 16;82(2):76-83.
Kwak Y, Nam SK, Seo AN, Kim DW, Kang SB, Kim WH, Lee HS.
PMID: 26088290
Abstract Objectives: Fibroblast growth factor receptor 1 (FGFR1) has been reported to be overexpressed in colorectal cancer (CRC) and suggested to be a therapeutic target. In this study, we investigated FGFR1 expression and amplification in CRC and its correlation with clinicopathologic parameters. Methods:FGFR1 dual-color fluorescence in situ hybridization and mRNA in situ hybridization were performed on tissue array blocks composed of 291 consecutive primary CRCs. Results: Of the 291 CRC cases, FGFR1 gene amplification was found in 11 (3.8%) cases, high FGFR1 polysomy in 4 (1.4%) cases, and FGFR1 gene copy number (GCN) gain (GCN >2) in 77 (26.5%) cases. FGFR1 GCN gain was significantly associated with left-sided location, lymph node metastasis, distant metastasis, and higher TNM stage (p < 0.05). FGFR1 GCN gain also correlated with poor patient survival (p = 0.015). FGFR1 mRNA overexpression (score 3-4) was present in 11.7% (34/291) of the patients and was significantly associated with FGFR1 GCN alteration (Pearson correlation coefficient, r = 0.463; p < 0.001). Conclusion:FGFR1 GCN gain was more frequently found (26.5%) than gene amplification (3.8%) and correlated with aggressive clinical behavior in consecutive CRC patients. FGFR1 GCN alteration was associated with a high FGFR1 mRNA level.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Rodriguez, LA;Kim, SH;Page, SC;Nguyen, CV;Pattie, EA;Hallock, HL;Valerino, J;Maynard, KR;Jaffe, AE;Martinowich, K;
PMID: 36369482 | DOI: 10.1038/s41386-022-01487-y
The lateral septum (LS) is a basal forebrain GABAergic region that is implicated in social novelty. However, the neural circuits and cell signaling pathways that converge on the LS to mediate social behaviors aren't well understood. Multiple lines of evidence suggest that signaling of brain-derived neurotrophic factor (BDNF) through its receptor TrkB plays important roles in social behavior. BDNF is not locally produced in LS, but we demonstrate that nearly all LS GABAergic neurons express TrkB. Local TrkB knock-down in LS neurons decreased social novelty recognition and reduced recruitment of neural activity in LS neurons in response to social novelty. Since BDNF is not synthesized in LS, we investigated which inputs to LS could serve as potential BDNF sources for controlling social novelty recognition. We demonstrate that selectively ablating inputs to LS from the basolateral amygdala (BLA), but not from ventral CA1 (vCA1), impairs social novelty recognition. Moreover, depleting BDNF selectively in BLA-LS projection neurons phenocopied the decrease in social novelty recognition caused by either local LS TrkB knockdown or ablation of BLA-LS inputs. These data support the hypothesis that BLA-LS projection neurons serve as a critical source of BDNF for activating TrkB signaling in LS neurons to control social novelty recognition.
Development (Cambridge, England)
Imaimatsu, K;Hiramatsu, R;Tomita, A;Itabashi, H;Kanai, Y;
PMID: 37376880 | DOI: 10.1242/dev.201660
Temporal transcription profiles of fetal testes with Sertoli cell ablation were examined in 4-day culture using a diphtheria toxin (DT)-dependent cell knockout system in AMH-TRECK transgenic (Tg) mice. RNA analysis revealed that ovarian-specific genes, including Foxl2, were ectopically expressed in DT-treated Tg testis explants initiated at embryonic days 12.5-13.5. FOXL2-positive cells were ectopically observed in two testicular regions-near the testicular surface epithelia and around its adjacent mesonephros. The surface FOXL2-positive cells, together with ectopic expression of Lgr5 and Gng13 (markers of ovarian cords), were derived from the testis epithelia/subepithelia, whereas another FOXL2-positive population was the 3βHSD-negative stroma near the mesonephros. In addition to high expression of Fgfr1/Fgfr2 and heparan sulfate proteoglycan (a reservoir for FGF ligand) in these two sites, exogenous FGF9 additives repressed DT-dependent Foxl2 upregulation in Tg testes. These findings imply retention of Foxl2 inducibility in the surface epithelia and peri-mesonephric stroma of the testicular parenchyma, in which certain paracrine signals, including FGF9 derived from fetal Sertoli cells, repress feminization in these two sites of the early fetal testis.
Morphological and neurochemical characterization of glycinergic neurons in laminae I-IV of the mouse spinal dorsal horn
The Journal of comparative neurology
Miranda, CO;Hegedüs, K;Wildner, H;Zeilhofer, HU;Antal, M;
PMID: 34382691 | DOI: 10.1002/cne.25232
A growing body of experimental evidence shows that glycinergic inhibition plays vital roles in spinal pain processing. In spite of this, however, our knowledge about the morphology, neurochemical characteristics, and synaptic relations of glycinergic neurons in the spinal dorsal horn is very limited. The lack of this knowledge makes our understanding about the specific contribution of glycinergic neurons to spinal pain processing quite vague. Here we investigated the morphology and neurochemical characteristics of glycinergic neurons in laminae I-IV of the spinal dorsal horn using a GlyT2::CreERT2-tdTomato transgenic mouse line. Confirming previous reports, we show that glycinergic neurons are sparsely distributed in laminae I-II, but their densities are much higher in lamina III and especially in lamina IV. First in the literature, we provide experimental evidence indicating that in addition to neurons in which glycine colocalizes with GABA, there are glycinergic neurons in laminae I-II that do not express GABA and can thus be referred to as glycine-only neurons. According to the shape and size of cell bodies and dendritic morphology, we divided the tdTomato-labeled glycinergic neurons into three and six morphological groups in laminae I-II and laminae III-IV, respectively. We also demonstrate that most of the glycinergic neurons co-express neuronal nitric oxide synthase, parvalbumin, the receptor tyrosine kinase RET, and the retinoic acid-related orphan nuclear receptor β (RORβ), but there might be others that need further neurochemical characterization. The present findings may foster our understanding about the contribution of glycinergic inhibition to spinal pain processing.
Gertler, TS;Cherian, S;DeKeyser, JM;Kearney, JA;George, AL;
PMID: 35346832 | DOI: 10.1016/j.nbd.2022.105713
KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, but how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.
International journal of molecular sciences
Miranda, CO;Hegedüs, K;Kis, G;Antal, M;
PMID: 37108107 | DOI: 10.3390/ijms24086943
A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.
Dilly, GA;Kittleman, CW;Kerr, TM;Messing, RO;Mayfield, RD;
PMID: 35859068 | DOI: 10.1038/s41398-022-02063-0
The central amygdala (CeA) contains a diverse population of cells, including multiple subtypes of GABAergic neurons, along with glia and epithelial cells. Specific CeA cell types have been shown to affect alcohol consumption in animal models of dependence and may be involved in negative affect during alcohol withdrawal. We used single-nuclei RNA sequencing to determine cell-type specificity of differential gene expression in the CeA induced by alcohol withdrawal. Cells within the CeA were classified using unbiased clustering analyses and identified based on the expression of known marker genes. Differential gene expression analysis was performed on each identified CeA cell-type. It revealed differential gene expression in astrocytes and GABAergic neurons associated with alcohol withdrawal. GABAergic neurons were further subclassified into 13 clusters of cells. Analyzing transcriptomic responses in these subclusters revealed that alcohol exposure induced multiple differentially expressed genes in one subtype of CeA GABAergic neurons, the protein kinase C delta (PKCδ) expressing neurons. These results suggest that PKCδ neurons in the CeA may be uniquely sensitive to the effects of alcohol exposure and identify a novel population of cells in CeA associated with alcohol withdrawal.