ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Clinical Lung Cancer
2018 Sep 03
Ng TL, Yu H, Smith DE, Boyle TA, York ER, Leedy S, Gao D, Aisner DL, Van Bokhoven A, Heasley LE, Hirsch FR, Camidge DR.
PMID: - | DOI: 10.1016/j.cllc.2018.09.001
Pre-clinically, high FGFR1 mRNA (FGFR1-MRNA) and FGFR1 amplification (FGFR1-AMP) predicted sensitivity to FGFR inhibitors in NSCLC and SCLC cell lines. KRAS mutations did not preclude sensitivity.
Metastatic EGFR- and ALK-negative lung cancers were screened for FGFR1-MRNA by in-situ hybridization (ISH) and FGFR1-AMP by silver in-situ hybridization (SISH). Positive cases were offered ponatinib, a multi-kinase inhibitor of FGFR1-4. Differences in overall survival (OS) between cohorts were assessed using log-rank test. Association of FGFR1 positivity with clinicopathologic features were assessed using Fisher’s exact test and Kruskal-Wallis rank sum test.
171 cases were prescreened: 9/123 (7.3%) SISH+; 53/126 (42.1%) ISH+; 6 cases concordantly positive for SISH and ISH. SISH+ cases had fewer coincident KRAS mutations (p=0.03) than SISH- cases, and ISH+ cases had worse OS (p=0.020) than ISH- cases. Data distributions suggested a distinct higher positivity cutpoint for FGFR1 ISH (≥20%), occurring in 23% [29/126] cases, was associated with SCLC histology (p=0.022), soft tissue metastases (p=0.050) and shorter OS (p=0.031). Four patients received ponatinib on study: All ISH+ by the initial cutpoint, 2/4 by higher cutpoint, 1/4 SISH+. Tolerability was poor. The best response for the two higher ISH cases was SD and PD for the two lower ISH cases.
Elevated FGFR1-MRNA is more common than FGFR1-AMP and associated with worse OS. Higher FGFR1 mRNA expression may be associated with a specific phenotype and is worthy of further exploration. Ponatinib’s poor tolerance suggests further FGFR exploration in ISH+ cases should utilize more selective FGFR1 inhibitors.
Mol Cancer Ther.
2017 Jun 13
Weeden CE, Holik AZ, Young RJ, Ma SB, Garnier JM, Fox SB, Antippa P, Irving LB, Steinfort DP, Wright GM, Russell PA, Ritchie ME, Burns CJ, Solomon B, Asselin-Labat ML.
PMID: 28611104 | DOI: 10.1158/1535-7163.MCT-17-0174
Lung squamous cell carcinoma (SqCC) is a molecularly complex and genomically unstable disease. No targeted therapy is currently approved for lung SqCC, although potential oncogenic drivers of SqCC have been identified, including amplification of the fibroblast growth factor receptor 1 (FGFR1). Reports from a recently completed clinical trial indicate low response rates in patients treated with FGFR tyrosine kinase inhibitors, suggesting inadequacy of FGFR1 amplification as a biomarker of response, or the need for combination treatment. We aimed to develop accurate models of lung SqCC and determine improved targeted therapies for these tumors. We show that detection of FGFR1 mRNA by RNA in situ hybridization is a better predictor of response to FGFR inhibition than FGFR1 gene amplification using clinically relevant patient-derived xenograft (PDX) models of lung SqCC. FGFR1-overexpressing tumors were observed in all histologic subtypes of non-small cell lung cancers (NSCLC) as assessed on a tissue microarray, indicating a broader range of tumors that may respond to FGFR inhibitors. In FGFR1-overexpressing PDX tumors, we observed increased differentiation and reduced proliferation following FGFR inhibition. Combination therapy with cisplatin was able to increase tumor cell death, and dramatically prolonged animal survival compared to single-agent treatment. Our data suggest that FGFR tyrosine kinase inhibitors can benefit NSCLC patients with FGFR1-overexpressing tumors and provides a rationale for clinical trials combining cisplatin with FGFR inhibitors.
Cancer.
2016 Jun 17
Lim SH, Sun JM, Choi YL, Kim HR, Ahn S, Lee JY, Lee SH, Ahn JS, Park K, Kim JH, Cho BC, Ahn MJ.
PMID: 27315356 | DOI: 10.1002/cncr.30135.
Diabetes.
2018 Jun 27
Xin Y, Gutierrez GD, Okamoto H, Kim J, Lee AH, Adler C, Ni M, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 29950394 | DOI: 10.2337/db18-0365
Proinsulin is a misfolding-prone protein making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single non-diabetic human β-cells detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com