ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
PLoS One.
2018 Mar 08
Sugiura H, Matsushita A, Futaya M, Teraoka A, Akiyama KI, Usui N, Nagano N, Nitta K, Tsuchiya K.
PMID: 29518087 | DOI: 10.1371/journal.pone.0191706
The hormone fibroblast growth factor 23 (FGF23) is secreted from bone and is involved in phosphorus (P) metabolism. FGF23 mainly binds the FGF receptor, which interacts with αKlotho in the kidney or parathyroid and regulates Na-dependent phosphate co-transporter type IIa (NaPi-IIa) and type IIc (NaPi-IIc) expression, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) activity, and parathyroid hormone (PTH) secretion. In this study, we utilized hemi-nephrectomized rats fed a high-P diet (HP Nx), rats subjected to a partial nephrectomy (PN) and rats with doxorubicin-induced renal failure (DXR) as chronic kidney disease (CKD) animal models and analyzed the P metabolism and FGF23 expression in the kidneys in each CKD model. We cultured HK2 cells with a high level of P, 1,25(OH)2D3 or transforming growth factor-β1 (TGFβ1) to investigate the FGF23 expression mechanism. In both the HP Nx and PN rats, the blood FGF23 and PTH levels were increased. However, the 1,25(OH)2D3 level was increased in the HP Nx rats and decreased in the PN rats. In all three animal models, the mRNA expression of αKlotho, NaPi-IIa and NaPi-IIc was decreased, and the mRNA expression of TGFβ1, collagen1a1, osteopontin and FGF23 was elevated in the kidney. FGF23 protein and mRNA were expressed at high levels in the extended tubule epithelium, which was an osteopontin-positive region in the HP and PN rats. FGF23 and osteopontin mRNAs were expressed in HK2 cells incubated with TGFβ1; however, these levels were not altered in HK2 cells incubated with 1,25(OH)2D3 and high P levels in vitro. Altogether, FGF23 is expressed in the kidneys in CKD model rats. Following stimulation with TGFβ1, the injured renal tubular epithelial cells are strongly suspected to express both FGF23 and osteopontin. FGF23 produced in the kidney might contribute to P metabolism in subjects with CKD.
Kidney International
2017 Mar 22
Mace ML, Gravesen E, Nordholm A, Hofman-Bang J, Secher T, Olgaard K, Lewin E.
PMID: - | DOI: 10.1016/j.kint.2017.01.015
Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting a disrupted feedback regulatory loop or an extra-skeletal source of this phosphatonin. Since induction of FGF23 expression in injured organs has been reported we decided to examine the regulation of FGF23 gene and protein expressions in the kidney and whether kidney-derived FGF23 contributes to the high plasma levels of FGF23 in uremia. FGF23 mRNA was not detected in normal kidneys, but was clearly demonstrated in injured kidneys, already after four hours in obstructive nephropathy and at 8 weeks in the remnant kidney of 5/6 nephrectomized rats. No renal extraction was found in uremic rats in contrast to normal rats. Removal of the remnant kidney had no effect on plasma FGF23 levels. Well-known regulators of FGF23 expression in bone, such as parathyroid hormone, calcitriol, and inhibition of the FGF receptor by PD173074, had no impact on kidney expression of FGF23. Thus, the only direct contribution of the injured kidney to circulating FGF23 levels in uremia appears to be reduced renal extraction of bone-derived FGF23. Kidney-derived FGF23 does not generate high plasma FGF23 levels in uremia and is regulated differently than the corresponding regulation of FGF23 gene expression in bone.
Gene Expr Patterns.
2018 Apr 06
Ledwon JK, Turin SY, Gosain AK, Topczewska JM.
PMID: 29630949 | DOI: 10.1016/j.gep.2018.04.002
Fibroblast growth factor (FGF) signaling is essential for many developmental processes and plays a pivotal role in skeletal homeostasis, regeneration and wound healing. FGF signals through one of five tyrosine kinase receptors: Fgfr1a, -1b, -2, -3, -4. To characterize the expression of zebrafish fgfr3 from the larval stage to adulthood, we used RNAscope in situ hybridization on paraffin sections of the zebrafish head. Our study revealed spatial and temporal distribution of fgfr3 transcript in chondrocytes of the head cartilages, osteoblasts involved in bone formation, ventricular zone of the brain, undifferentiated mesenchymal cells of the skin, and lens epithelium of the eye. In general, the expression pattern of zebrafish fgfr3 is similar to the expression observed in higher vertebrates.
The Journal of clinical investigation
2023 Mar 21
Ovejero, D;Michel, Z;Cataisson, C;Saikali, A;Galisteo, R;Yuspa, SH;Collins, MT;de Castro, LF;
PMID: 36943390 | DOI: 10.1172/JCI159330
PLoS One.
2016 Nov 09
Topczewska JM, Shoela RA, Tomaszewski JP, Mirmira RB, Gosain AK.
PMID: 27829009 | DOI: 10.1371/journal.pone.0165775
Using morphological, histological, and TEM analyses of the cranium, we provide a detailed description of bone and suture growth in zebrafish. Based on expression patterns and localization, we identified osteoblasts at different degrees of maturation. Our data confirm that, unlike in humans, zebrafish cranial sutures maintain lifelong patency to sustain skull growth. The cranial vault develops in a coordinated manner resulting in a structure that protects the brain. The zebrafish cranial roof parallels that of higher vertebrates and contains five major bones: one pair of frontal bones, one pair of parietal bones, and the supraoccipital bone. Parietal and frontal bones are formed by intramembranous ossification within a layer of mesenchyme positioned between the dermal mesenchyme and meninges surrounding the brain. The supraoccipital bone has an endochondral origin. Cranial bones are separated by connective tissue with a distinctive architecture of osteogenic cells and collagen fibrils. Here we show RNA in situ hybridization for col1a1a, col2a1a, col10a1, bglap/osteocalcin, fgfr1a, fgfr1b, fgfr2, fgfr3, foxq1, twist2, twist3, runx2a, runx2b, sp7/osterix, and spp1/ osteopontin, indicating that the expression of genes involved in suture development in mammals is preserved in zebrafish. We also present methods for examining the cranium and its sutures, which permit the study of the mechanisms involved in suture patency as well as their pathological obliteration. The model we develop has implications for the study of human disorders, including craniosynostosis, which affects 1 in 2,500 live births.
Eur Urol Focus.
2017 Aug 27
Necchi A, Raggi D, Volpi CC, Giannatempo P, Colecchia M, Gloghini A.
PMID: 28855072 | DOI: 10.1016/j.euf.2017.08.002
Oncotarget.
2018 Aug 14
Fromme JE, Schmitz K, Wachter A, Grzelinski M, Zielinski D, Koppel C, Conradi LC, Homayounfar K, Hugo T, Hugo S, Lukat L, Rüschoff J, Ströbel P, Ghadimi M, Beißbarth T, Reuter-Jessen K, Bleckmann A, Schildhaus HU.
PMID: 30181810 | DOI: 10.18632/oncotarget.25941
Abstract
OBJECTIVES:
Metastatic colorectal cancer (CRC) remains a leading cause of cancer related deaths. Patients with oligometastatic liver disease represent a clinical subgroup with heterogeneous course. Until now, biomarkers to characterize outcome and therapeutic options have not been fully established.
METHODS:
We investigated the prevalence of FGFR alterations in a total of 140 primary colorectal tumors and 63 liver metastases of 55 oligometastatic CRC patients. FGF receptors (FGFR1-4) and their ligands (FGF3, 4 and 19) were analyzed for gene amplifications and rearrangements as well as for RNA overexpression in situ. Results were correlated with clinico-pathologic data and molecular subtypes.
RESULTS:
Primary tumors showed FGFR1 (6.3%) and FGF3,4,19 (2.2%) amplifications as well as FGFR1 (10.1%), FGFR2 (5.5%) and FGFR3 (16.2%) overexpression. In metastases, we observed FGFR1 amplifications (4.8%) as well as FGFR1 (8.5%) and FGFR3 (14.9%) overexpression. Neither FGFR2-4 amplifications nor gene rearrangements were observed. FGFR3 overexpression was significantly associated with shorter overall survival in metastases (mOS 19.9 vs. 47.4 months, HR=3.14, p=0.0152), but not in primary CRC (HR=1.01, p=0.985). Although rare, also FGFR1 amplification was indicative of worse outcome (mOS 12.6 vs. 47.4 months, HR=8.83, p=0.00111).
CONCLUSIONS:
We provide the so far most comprehensive analysis of FGFR alterations in primary and metastatic CRC. We describe FGFR3 overexpression in 15% of CRC patients with oligometastatic liver disease as a prognosticator for poor outcome. Recently FGFR3 overexpression has been shown to be a potential therapeutic target. Therefore, we suggest focusing on this subgroup in upcoming clinical trials with FGFR-targeted therapies.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com