Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (180)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • (-) Remove Lgr5 filter Lgr5 (151)
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • (-) Remove SOX2 filter SOX2 (24)
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (28) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (26) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (21) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Assay (15) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (15) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (14) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (10) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Stem Cells (67) Apply Stem Cells filter
  • Cancer (66) Apply Cancer filter
  • Development (26) Apply Development filter
  • Neuroscience (17) Apply Neuroscience filter
  • Stem cell (16) Apply Stem cell filter
  • Other (12) Apply Other filter
  • Inflammation (8) Apply Inflammation filter
  • Metabolism (5) Apply Metabolism filter
  • Developmental (3) Apply Developmental filter
  • Obesity (3) Apply Obesity filter
  • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
  • Cell transcriptomics (1) Apply Cell transcriptomics filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Colitis (1) Apply Colitis filter
  • diabetes (1) Apply diabetes filter
  • Diet (1) Apply Diet filter
  • Gastro (1) Apply Gastro filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Keratin (1) Apply Keratin filter
  • lncRNA (1) Apply lncRNA filter
  • Memory (1) Apply Memory filter
  • Organoid (1) Apply Organoid filter
  • Organoids (1) Apply Organoids filter
  • Other: Blood Vessels (1) Apply Other: Blood Vessels filter
  • Other: Fish Development (1) Apply Other: Fish Development filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Immunity (1) Apply Other: Immunity filter
  • Other: Prostate (1) Apply Other: Prostate filter
  • Pulmonology (1) Apply Pulmonology filter
  • Radiation enteritis (1) Apply Radiation enteritis filter
  • Radiotherapy (1) Apply Radiotherapy filter
  • Regeneration (1) Apply Regeneration filter
  • scRNAseq (1) Apply scRNAseq filter
  • Signalling (1) Apply Signalling filter
  • Single Cell (1) Apply Single Cell filter
  • therapeutics (1) Apply therapeutics filter
  • Tumourigenesis (1) Apply Tumourigenesis filter

Category

  • Publications (180) Apply Publications filter
RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6.

Nature.

2018 May 16

Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefèvre C, Khatoo M, Thi Tran H, Naert T, Noelanders R, Hajamohideen A, Beneteau C, de Sousa SB, Karaman B, Latypova X, Başaran S, Yücel EB, Tan TT, Vlaeminck L, Nayak SS, Shukla A, Girisha KM, Le Caignec C,
PMID: 29769720 | DOI: 10.1038/s41586-018-0118-y

The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.

T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation

Cell

2018 Nov 01

Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su CW, Smillie C, Shekhar K, Chen Z, Wu C, Ordovas-Montanes J, Alvarez D, Herbst RH, Zhang M, Tirosh I, Dionne D, Nguyen LT, Xifaras ME, Shalek AK, von Andrian UH, Graham DB, Rozenblatt-Rosen O, Shi HN, Kuchroo V, Yilmaz OH, Regev A, Xavier RJ.
PMID: 30392957 | DOI: 10.1016/j.cell.2018.10.008

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.

Atoh1+ secretory progenitors possess renewal capacity independent of Lgr5+ cells during colonic regeneration.

EMBO J. 2019 Jan 11.

2019 Jan 11

Castillo-Azofeifa D, Fazio EN, Nattiv R, Good HJ, Wald T, Pest MA, de Sauvage FJ, Klein OD, Asfaha S.
PMID: 30635334 | DOI: 10.15252/embj.201899984

During homeostasis, the colonic epithelium is replenished every 3-5 days by rapidly cycling Lgr5 + stem cells. However, various insults can lead to depletion of Lgr5 + stem cells, and colonic epithelium can be regenerated from Lgr5-negative cells. While studies in the small intestine have addressed the lineage identity of the Lgr5-negative regenerative cell population, in the colon this question has remained unanswered. Here, we set out to identify which cell(s) contribute to colonic regeneration by performing genetic fate-mapping studies of progenitor populations in mice. First, using keratin-19 (Krt19) to mark a heterogeneous population of cells, we found that Lgr5-negative cells can regenerate colonic crypts and give rise to Lgr5 + stem cells. Notch1 + absorptive progenitor cells did not contribute to epithelial repair after injury, whereas Atoh1 + secretory progenitors did contribute to this process. Additionally, while colonic Atoh1 + cells contributed minimally to other lineages during homeostasis, they displayed plasticity and contributed to epithelial repair during injury, independent of Lgr5 + cells. Our findings suggest that promotion of secretory progenitor plasticity could enable gut healing in colitis.
Organoids from pituitary as a novel research model toward pituitary stem cell exploration.

J Endocrinol. 2018 Nov 1.

2018 Nov 01

Cox B, Laporte E, Vennekens A, Kobayashi H, Nys C, Van Zundert I, Uji-I H, Vercauteren Drubbel A, Beck B, Roose H, Boretto M, Vankelecom H.
PMID: 30475227 | DOI: 10.1530/JOE-18-0462

The pituitary is the master endocrine gland, harboring stem cells of which the phenotype and role remain poorly characterized. Here, we established organoids from mouse pituitary with the aim to generate a novel research model to study pituitary stem cell biology. The organoids originated from the pituitary cells expressing the stem cell marker SOX2, were long-term expandable, displayed a stemness phenotype during expansive culture and showed specific hormonal differentiation ability, although limited, after subrenal transplantation. Application of the protocol to transgenically injured pituitary harboring an activated stem cell population, resulted in more numerous organoids. Intriguingly, these organoids presented with a cystic morphology whereas the organoids from undamaged gland were predominantly dense, and appeared more limited in expandability. Transcriptomic analysis revealed distinct epithelial phenotypes and showed that cystic organoids more resembled the pituitary phenotype, at least to an immature state, and displayed in vitro differentiation, although yet moderate. Organoid characterization further exposed facets of regulatory pathways of the putative stem cells of the pituitary and advanced new injury-activated markers. Taken together, we established a novel organoid research model revealing new insights into the identity and regulation of the putative pituitary stem cells. This organoid model may eventually lead to an interesting tool to decipher pituitary stem cell biology in both healthy and diseased gland.
SH3BP4 Regulates Intestinal Stem Cells and Tumorigenesis by Modulating β-Catenin Nuclear Localization.

Cell Rep.

2019 Feb 26

Antas P, Novellasdemunt L, Kucharska A, Massie I, Carvalho J, Oukrif D, Nye E, Novelli M, Li VSW.
PMID: 30811977 | DOI: 10.1016/j.celrep.2019.01.110

Wnt signals at the base of mammalian crypts play a pivotal role in intestinal stem cell (ISC) homeostasis, whereas aberrant Wnt activation causes colon cancer. Precise control of Wnt signal strength is governed by a number of negative inhibitory mechanisms acting at distinctlevels of the cascade. Here, we identify the Wnt negative regulatory role of Sh3bp4 in the intestinal crypt. We show that the loss of Sh3bp4 increases ISC and Paneth cell numbers in murine intestine and accelerates adenoma development in Apcmin mice. Mechanistically, human SH3BP4 inhibits Wnt signaling downstream of β-catenin phosphorylation and ubiquitination. This Wnt inhibitory role is dependent on the ZU5 domain of SH3BP4. We further demonstrate that SH3BP4 is expressed at the perinuclear region to restrict nuclear localization of β-catenin. Our data uncover the tumor-suppressive role of SH3BP4 that functions as a negative feedback regulator of Wnt signaling through modulating β-catenin's subcellular localization.

RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes.

Cell Stem Cell.

2019 Feb 28

Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ.
PMID: 30853556 | DOI: 10.1016/j.stem.2019.02.002

Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.

NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor

EMBO j

2019 Dec 23

Novellasdemunt L, Kucharska A, Jamieson C, Prange-Barczynska M, Baulies A, Antas P, van der Vaart J, Gehart H, Maurice MM, Li VS
PMID: 31867777 | DOI: 10.15252/embj.2019102771

The intestinal stem cell (ISC) marker LGR5 is a receptor for R-spondin (RSPO) that functions to potentiate Wnt signalling in the proliferating crypt. It has been recently shown that Wnt plays a priming role for ISC self-renewal by inducing RSPO receptor LGR5 expression. Despite its pivotal role in homeostasis, regeneration and cancer, little is known about the post-translational regulation of LGR5. Here, we show that the HECT-domain E3 ligases NEDD4 and NEDD4L are expressed in the crypt stem cell regions and regulate ISC priming by degrading LGR receptors. Loss of Nedd4 and Nedd4l enhances ISC proliferation, increases sensitivity to RSPO stimulation and accelerates tumour development in Apcmin mice with increased numbers of high-grade adenomas. Mechanistically, we find that both NEDD4 and NEDD4L negatively regulate Wnt/?-catenin signalling by targeting LGR5 receptor and DVL2 for proteasomal and lysosomal degradation. Our findings unveil the previously unreported post-translational control of LGR receptors via NEDD4/NEDD4L to regulate ISC priming. Inactivation of NEDD4 and NEDD4L increases Wnt activation and ISC numbers, which subsequently enhances tumour predisposition and progression.
PDGFRα-induced stromal maturation is required to restrain postnatal intestinal epithelial stemness and promote defense mechanisms

Cell stem cell

2022 May 05

Jacob, JM;Di Carlo, SE;Stzepourginski, I;Lepelletier, A;Ndiaye, PD;Varet, H;Legendre, R;Kornobis, E;Benabid, A;Nigro, G;Peduto, L;
PMID: 35523143 | DOI: 10.1016/j.stem.2022.04.005

After birth, the intestine undergoes major changes to shift from an immature proliferative state to a functional intestinal barrier. By combining inducible lineage tracing and transcriptomics in mouse models, we identify a prodifferentiation PDGFRαHigh intestinal stromal lineage originating from postnatal LTβR+ perivascular stromal progenitors. The genetic blockage of this lineage increased the intestinal stem cell pool while decreasing epithelial and immune maturation at weaning age, leading to reduced postnatal growth and dysregulated repair responses. Ablating PDGFRα in the LTBR stromal lineage demonstrates that PDGFRα has a major impact on the lineage fate and function, inducing a transcriptomic switch from prostemness genes, such as Rspo3 and Grem1, to prodifferentiation factors, including BMPs, retinoic acid, and laminins, and on spatial organization within the crypt-villus and repair responses. Our results show that the PDGFRα-induced transcriptomic switch in intestinal stromal cells is required in the first weeks after birth to coordinate postnatal intestinal maturation and function.
Disruption of the crypt niche promotes outgrowth of mutated colorectal tumor stem cells

JCI insight

2022 Mar 08

Klingler, S;Hsu, KS;Hua, G;Martin, ML;Adileh, M;Baslan, T;Zhang, Z;Paty, PB;Fuks, Z;Brown, AM;Kolesnick, R;
PMID: 35260534 | DOI: 10.1172/jci.insight.153793

Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5-positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane-dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury-induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.
A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers

Nature cell biology

2021 Dec 01

Fatehullah, A;Terakado, Y;Sagiraju, S;Tan, TL;Sheng, T;Tan, SH;Murakami, K;Swathi, Y;Ang, N;Rajarethinam, R;Ming, T;Tan, P;Lee, B;Barker, N;
PMID: 34857912 | DOI: 10.1038/s41556-021-00793-9

Gastric cancer is among the most prevalent and deadliest of cancers globally. To derive mechanistic insight into the pathways governing this disease, we generated a Claudin18-IRES-CreERT2 allele to selectively drive conditional dysregulation of the Wnt, Receptor Tyrosine Kinase and Trp53 pathways within the gastric epithelium. This resulted in highly reproducible metastatic, chromosomal-instable-type gastric cancer. In parallel, we developed orthotopic cancer organoid transplantation models to evaluate tumour-resident Lgr5+ populations as functional cancer stem cells via in vivo ablation. We show that Cldn18 tumours accurately recapitulate advanced human gastric cancer in terms of disease morphology, aberrant gene expression, molecular markers and sites of distant metastases. Importantly, we establish that tumour-resident Lgr5+ stem-like cells are critical to the initiation and maintenance of tumour burden and are obligatory for the establishment of metastases. These models will be invaluable for deriving clinically relevant mechanistic insights into cancer progression and as preclinical models for evaluating therapeutic targets.
NOTUM from Apc-mutant cells biases clonal competition to initiate cancer

Nature

2021 Jun 01

Flanagan, DJ;Pentinmikko, N;Luopajärvi, K;Willis, NJ;Gilroy, K;Raven, AP;Mcgarry, L;Englund, JI;Webb, AT;Scharaw, S;Nasreddin, N;Hodder, MC;Ridgway, RA;Minnee, E;Sphyris, N;Gilchrist, E;Najumudeen, AK;Romagnolo, B;Perret, C;Williams, AC;Clevers, H;Nummela, P;Lähde, M;Alitalo, K;Hietakangas, V;Hedley, A;Clark, W;Nixon, C;Kirschner, K;Jones, EY;Ristimäki, A;Leedham, SJ;Fish, PV;Vincent, JP;Katajisto, P;Sansom, OJ;
PMID: 34079124 | DOI: 10.1038/s41586-021-03525-z

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
Immunohistochemical Study of a Correlation between Pemphigus Vulgaris Activity Score and Stem Cell Control

The Egyptian Journal of Hospital Medicine

2021 Apr 01

Bazid, H;Seleit, I;Abo Hegazy, S;Samaka, R;
| DOI: 10.21608/ejhm.2021.165168

BACKGROUND: Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune blistering disease. PV autoantibodies disrupt desmosomal adhesion and cause acantholysis. Previous researches have shown that stem cells are indirectly involved as a result of desmoglein deficiency. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) as a follicular stem cell marker was evaluated in aim to correlate its intensity of expression with disease severity. OBJECTIVE: To correlate LGR5 intensity of expression with disease severity. PATIENT AND METHODS: This prospective cross sectional study was carried out on 20 PV patients. Patients were subjected to complete history taking, general, dermatological examination and assessment of disease severity by the Pemphigus Vulgaris Activity Score (PVAS), histopathological and immunohistochemical expression of LGR5 were done. RESULTS: All studied cases showed positive cytoplasmic basal LGR5 expression in patchy manner. 75% of cases had mild intensity of expression, 15% had moderate intensity and their Histo (H) score ranged from 50-130 with Mean ±SD 110±18.92. There were no significant correlation between PVAS scores ''skin, mucosa and total involvement'' and H score of LGR5 expression. CONCLUSION: The current study could shed a new light on the disease and its correlation with stem cells, LGR5 as a stem cell marker could be related to the healing process in PV. However, it didn't correlate PVAS scores either in skin, mucosa or total involvement.  

Pages

  • « first
  • ‹ previous
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?