ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Molecular metabolism
2022 Sep 02
Patel, S;Haider, A;Alvarez-Guaita, A;Bidault, G;El-Sayed Moustafa, JS;Guiu-Jurado, E;Tadross, JA;Warner, J;Harrison, J;Virtue, S;Scurria, F;Zvetkova, I;Blüher, M;Small, KS;O'Rahilly, S;Savage, DB;
PMID: 36064109 | DOI: 10.1016/j.molmet.2022.101589
Nature metabolism
2022 Jul 01
Pena-Leon, V;Folgueira, C;Barja-Fernández, S;Pérez-Lois, R;Da Silva Lima, N;Martin, M;Heras, V;Martinez-Martinez, S;Valero, P;Iglesias, C;Duquenne, M;Al-Massadi, O;Beiroa, D;Souto, Y;Fidalgo, M;Sowmyalakshmi, R;Guallar, D;Cunarro, J;Castelao, C;Senra, A;González-Saenz, P;Vázquez-Cobela, R;Leis, R;Sabio, G;Mueller-Fielitz, H;Schwaninger, M;López, M;Tovar, S;Casanueva, FF;Valjent, E;Diéguez, C;Prevot, V;Nogueiras, R;Seoane, LM;
PMID: 35879461 | DOI: 10.1038/s42255-022-00602-z
iScience
2021 Jul 01
Shadrach, J;Stansberry, W;Milen, A;Ives, R;Fogarty, E;Antonellis, A;Pierchala, B;
| DOI: 10.1016/j.isci.2021.102700
Experimental neurology
2023 Mar 30
Wimalasena, NK;Taub, DG;Shim, J;Hakim, S;Kawaguchi, R;Chen, L;El-Rifai, M;Geschwind, D;Dib-Hajj, SD;Waxman, SG;Woolf, CJ;
PMID: 37003485 | DOI: 10.1016/j.expneurol.2023.114393
Cell Rep.
2018 Aug 07
Restelli LM, Oettinghaus B, Halliday M, Agca C, Licci M, Sironi L, Savoia C, Hench J, Tolnay M, Neutzner A, Schmidt A, Eckert A, Mallucci G, Scorrano L, Frank S.
PMID: 30089252 | DOI: 10.1016/j.celrep.2018.07.023
Stress adaptation is essential for neuronal health. While the fundamental role of mitochondria in neuronal development has been demonstrated, it is still not clear how adult neurons respond to alterations in mitochondrial function and how neurons sense, signal, and respond to dysfunction of mitochondria and their interacting organelles. Here, we show that neuron-specific, inducible in vivo ablation of the mitochondrial fission protein Drp1 causes ER stress, resulting in activation of the integrated stress response to culminate in neuronal expression of the cytokine Fgf21. Neuron-derived Fgf21 induction occurs also in murine models of tauopathy and prion disease, highlighting the potential of this cytokine as an early biomarker for latent neurodegenerative conditions.
Nature metabolism
2022 Nov 01
Schneeberger, M;Brice, NL;Pellegrino, K;Parolari, L;Shaked, JT;Page, KJ;Marchildon, F;Barrows, DW;Carroll, TS;Tolpiko, T;Mulligan, VM;Newman, R;Doyle, K;Bürli, R;Barker, DF;Glen, A;Ortuño, MJ;Nectow, AR;Renier, N;Cohen, P;Carlton, M;Heintz, N;Friedman, JM;
PMID: 36411386 | DOI: 10.1038/s42255-022-00677-8
Cell reports
2022 Aug 23
Zhou, B;Claflin, KE;Flippo, KH;Sullivan, AI;Asghari, A;Tadinada, SM;Jensen-Cody, SO;Abel, T;Potthoff, MJ;
PMID: 36001982 | DOI: 10.1016/j.celrep.2022.111239
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
2023 Mar 24
Yi, T;Wang, N;Huang, J;Wang, Y;Ren, S;Hu, Y;Xia, J;Liao, Y;Li, X;Luo, F;Ouyang, Q;Li, Y;Zheng, Z;Xiao, Q;Ren, R;Yao, Z;Tang, X;Wang, Y;Chen, X;He, C;Li, H;Hu, Z;
PMID: 36961096 | DOI: 10.1002/advs.202300189
Nature communications
2023 Jan 23
Jung, M;Dourado, M;Maksymetz, J;Jacobson, A;Laufer, BI;Baca, M;Foreman, O;Hackos, DH;Riol-Blanco, L;Kaminker, JS;
PMID: 36690629 | DOI: 10.1038/s41467-023-36014-0
Neuron
2019 Feb 18
Zimmerman AL, Kovatsis EM, Poszgai RY, Tasnim A, Zhang Q, Ginty DD.
PMID: 30826183 | DOI: 10.1016/j.neuron.2019.02.002
Presynaptic inhibition (PSI) of primary sensory neurons is implicated in controlling gain and acuity in sensory systems. Here, we define circuit mechanisms and functions of PSI of cutaneous somatosensory neuron inputs to the spinal cord. We observed that PSI can be evoked by different sensory neuron populations and mediated through at least two distinct dorsal horn circuit mechanisms. Low-threshold cutaneousafferents evoke a GABAA-receptor-dependent form of PSI that inhibits similar afferent subtypes, whereas small-diameter afferentspredominantly evoke an NMDA-receptor-dependent form of PSI that inhibits large-diameter fibers. Behaviorally, loss of either GABAAreceptors (GABAARs) or NMDA receptors (NMDARs) in primary afferents leads to tactile hypersensitivity across skin types, and loss of GABAARs, but not NMDARs, leads to impaired texture discrimination. Post-weaning age loss of either GABAARs or NMDARs in somatosensory neurons causes systemic behavioral abnormalities, revealing critical roles of two distinct modes of PSI of somatosensory afferents in adolescence and throughout adulthood.
Cell.
2016 Sep 22
Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, Atwater E, Croney D, Zeidel ML, Osten P, Sabatini BL.
PMID: 27662084 | DOI: 10.1016/j.cell.2016.08.073
Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.
Cell.
2018 Aug 09
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA.
PMID: 30096299 | DOI: 10.1016/j.cell.2018.07.028
The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals. Cross-region analysis of these 565 cell populations revealed features of brain organization, including a gene-expression module for synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated ion channels, functional distinctions among the cells of the vasculature and specialization of glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a reference for development, disease, and evolution.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com