Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (9)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • (-) Remove HPV HR18 filter HPV HR18 (7)
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter

Research area

  • (-) Remove Cancer filter Cancer (9)
  • HPV (4) Apply HPV filter
  • Infectious Disease (2) Apply Infectious Disease filter

Category

  • Publications (9) Apply Publications filter
Diagnostic Algorithmic Proposal Based on Comprehensive Immunohistochemical Evaluation of 297 Invasive Endocervical Adenocarcinomas.

Am J Surg Pathol.

2018 Aug 04

Stolnicu S, Barsan I, Hoang L, Patel P, Chiriboga L, Terinte C, Pesci A, Aviel-Ronen S, Kiyokawa T, Alvarado-Cabrero I, Pike MC, Oliva E, Park KJ, Soslow RA.
PMID: 29851704 | DOI: 10.1097/PAS.0000000000001090

The International Endocervical Adenocarcinoma Criteria and Classification was developed to separate endocervical adenocarcinomas (ECAs) into 2 main categories on the basis of morphology such as human papilloma virus-associated (HPVA) and non-human papilloma virus-associated adenocarcinomas. We aimed to improve the diagnostic accuracy of International Endocervical Adenocarcinoma Criteria and Classification by performing a comprehensive immunohistochemical evaluation and constructing objective immunohistochemical-based algorithms for the classification of these tumors. Tissue microarrays were constructed from 297 of 409 cases used to develop the original classification. Immunostains included p16, p53, estrogen receptor (ER), progesterone receptor, androgen receptor, Vimentin, CK7, CK20, HER2, HIK1083, MUC6, CA-IX, SATB2, HNF-1beta, napsin A, PAX8, CDX2, GATA3, p63, p40, and TTF-1. High-risk human papilloma virus (HR-HPV) was detected by in situ hybridization (ISH) using probes against E6 and E7 mRNA expressed in 18 different virus types. Vimentin, ER, and progesterone receptor were expressed in a significant minority of ECAs, mostly HPVAs, limiting their use in differential diagnosis of endometrioid carcinoma when unaccompanied by HPV-ISH or p16. HR-HPV ISH had superior sensitivity, specificity, and negative and positive predictive values compared with p16, as published previously. HNF-1beta did not have the anticipated discriminatory power for clear cell carcinoma, nor did MUC6 or CA-IX for gastric-type carcinoma. HNF-1beta and napsin A were variably expressed in clear cell carcinoma, with HNF-1beta demonstrating less specificity, as it was ubiquitously expressed in gastric-type carcinoma and in the majority of HPV-associated mucinous (predominantly intestinal-type and invasive ECA resembling stratified mucin-producing intraepithelial lesion [iSMILE]) and usual-type carcinomas. HIK1083 was expressed in nearly half of gastric-type carcinomas, but not in the vast majority of other subtypes. GATA3 was positive in 10% of usual-type adenocarcinomas and in single examples of other subtypes. Rare gastric-type and HPVA mucinous carcinomas displayed HER2 overexpression. Androgen receptor was positive in 6% of usual-type adenocarcinomas. Aberrant p53 expression was found in only 3.6% of usual-type HPVA carcinomas, but it was more prevalent in mucinous (intestinal type and iSMILE) HPVAs and non-human papilloma virus-associates (particularly in gastric-type carcinoma, >50% of cases). The following diagnostic classification algorithms were developed with the above data. Carcinomas without overt cytoplasmic mucin (endometrioid, usual-type endocervical, clear cell, and mesonephric carcinomas) can be subclassified using HR-HPV ISH, ER, and GATA3, whereas carcinomas with easily appreciated cytoplasmic mucin (endometrioid carcinoma with mucinous features, HPVA mucinous, and gastric-type carcinomas) can be subclassified with HR-HPV ISH and ER.

Anaplasia and multinucleation in metastases of oropharyngeal squamous cell carcinoma is associated with poorer outcomes

Journal of the American Society of Cytopathology

2022 Apr 01

Jager, L;Felicelli, C;Alexiev, B;Samant, S;Johnson, D;
| DOI: 10.1016/j.jasc.2022.03.004

Introduction The presence of tumor cell anaplasia and multinucleation (A/M) in oropharyngeal squamous cell carcinoma (OPSCC) has recently been found to be associated with increased disease recurrence and poorer disease-specific survival, regardless of HPV status. We aim to study the detection of A/M in cytology specimens. Materials and Methods A comprehensive data search for all patients with OPSCC diagnosed and treated at Northwestern Memorial Hospital between January 2013 and April 2020. All cytology and histopathologic slides were reviewed for the presence of A/M in patients with both surgical resection or biopsy specimens and fine needle aspiration cytology of a metastatic site. Results 87 patients were identified with both surgical and cytology specimens available for review. A/M was identified in 21 cytology specimens and 14 surgical specimens. Cytologic A/M was seen in 11 of the 14 patients (78.5%) with corresponding histologic A/M and in 10 of the 73 patients (13.7%) without histologic A/M. Disease-specific survival was significantly worse in patients with cytologic A/M regardless of the presence of histologic A/M (P = 0.0064) and in patients with cytologic A/M only (P = 0.0271). In patients with p16 positive/HPV-associated carcinoma, disease-specific survival was significantly worse in patients with both histologic and cytologic A/M (P = 0.0305). Conclusions A/M can be reliably identified in cytology specimens among all the various stains and preparations irrespective of primary tumor histology. Identification of A/M on cytology specimens may indicate more aggressive clinical behavior and help guide patient management.
Cervical adenosquamous carcinoma: detailed analysis of morphology, immunohistochemical profile, and clinical outcomes in 59 cases.

Mod Pathol.

2018 Sep 26

Stolnicu S, Hoang L, Hanko-Bauer O, Barsan I, Terinte C, Pesci A, Aviel-Ronen S, Kiyokawa T, Alvarado-Cabrero I, Oliva E, Park KJ, Soslow RA.
PMID: 30258209 | DOI: 10.1038/s41379-018-0123-6

Although 2014 World Health Organization criteria require unequivocal glandular and squamous differentiation for a diagnosis of cervical adenosquamous carcinoma, in practice, adenosquamous carcinoma diagnoses are often made in tumors that lack unequivocal squamous and/or glandular differentiation. Considering the ambiguous etiologic, morphological, and clinical features and outcomes associated with adenosquamous carcinomas, we sought to redefine these tumors. We reviewed slides from 59 initially diagnosed adenosquamous carcinomas (including glassy cell carcinoma and related lesions) to confirm an adenosquamous carcinoma diagnosis only in the presence of unequivocal malignant glandular and squamous differentiation. Select cases underwent immunohistochemical profiling as well as human papillomavirus (HPV) testing by in situ hybridization. Of the 59 cases originally classified as adenosquamous carcinomas, 34 retained their adenosquamous carcinoma diagnosis, 9 were reclassified as pure invasive stratified mucin-producing carcinomas, 10 as invasive stratified mucin-producing carcinomas with other components (such as HPV-associated mucinous, usual-type, or adenosquamous carcinomas), and 4 as HPV-associated usual or mucinous adenocarcinomas with benign-appearing squamous metaplasia. Two glassy cell carcinomas were reclassified as poorly differentiated usual-type carcinomas based on morphology and immunophenotype. There were significant immunophenotypic differences between adenosquamous carcinomas and pure invasive stratified mucin-producing carcinomas with regard to HPV (p < 0.0001), PAX8 (p = 0.038; more in adenosquamous carcinoma), p40 (p < 0.0001; more in adenosquamous carcinoma), p63 (p = 0.0018; more in adenosquamous carcinoma) and MUC6 (p  < 0.0001; less in adenosquamous carcinoma), HNF-1beta (p = 0.0023), vimentin (p = 0.0003), p53 (p = 0.0004), and CK7 (p = 0.0002) expression. Survival outcomes were similar between all groups. Adenosquamous carcinomas should be diagnosed only in the presence of unequivocal malignant glandular and squamous differentiation. The two putative glassy cell carcinomas studied did not meet our criteria for adenosquamous carcinoma, and categorizing them as such should be reconsidered.

Fibroblast Growth Factor Receptor 1 and Related Ligands in Small-Cell Lung Cancer.

J Thorac Oncol. 2015 May 27.

Zhang L, Yu H, Badzio A, Boyle TA, Schildhaus HU, Lu X, Dziadziuszko R, Jassem J, Varella-Garcia M, Heasley LE, Kowalewski AA, Ellison K, Chen G, Zhou C, Hirsch FR.
PMID: 26016563 | DOI: 10.1080/15476286.2015.1053687

Introduction: Small-cell lung cancer (SCLC) accounts for 15% of all lung cancers and has been understudied for novel therapies. Signaling through fibroblast growth factors (FGF2, FGF9) and their high-affinity receptor has recently emerged as a contributing factor in the pathogenesis and progression of non-small-cell lung cancer. In this study, we evaluated fibroblast growth factor receptor 1 (FGFR1) and ligand expression in primary SCLC samples. Methods: FGFR1 protein expression, messenger RNA (mRNA) levels, and gene copy number were determined by immunohistochemistry (IHC), mRNA in situ hybridization, and silver in situ hybridization, respectively, in primary tumors from 90 patients with SCLC. Protein and mRNA expression of the FGF2 and FGF9 ligands were determined by IHC and mRNA in situ hybridization, respectively. In addition, a second cohort of 24 SCLC biopsy samples with known FGFR1 amplification by fluorescence in situ hybridization was assessed for FGFR1 protein expression by IHC. Spearman correlation analysis was performed to evaluate associations of FGFR1, FGF2 and FGF9 protein levels, respective mRNA levels, and FGFR1 gene copy number. Results: FGFR1 protein expression by IHC demonstrated a significant correlation with FGFR1 mRNA levels (p < 0.0001) and FGFR1 gene copy number (p = 0.03). The prevalence of FGFR1 mRNA positivity was 19.7%. FGFR1 mRNA expression correlated with both FGF2 (p = 0.0001) and FGF9 (p = 0.002) mRNA levels, as well as with FGF2 (p = 0.01) and FGF9 (p = 0.001) protein levels. There was no significant association between FGFR1 and ligands with clinical characteristics or prognosis. In the second cohort of specimens with known FGFR1 amplification by fluorescence in situ hybridization, 23 of 24 had adequate tumor by IHC, and 73.9% (17 of 23) were positive for FGFR1 protein expression. Conclusions: A subset of SCLCs is characterized by potentially activated FGF/FGFR1 pathways, as evidenced by positive FGF2, FGF9, and FGFR1 protein and/or mRNA expression. FGFR1 protein expression is correlated with FGFR1 mRNA levels and FGFR1 gene copy number. Combined analysis of FGFR1 and ligand expression may allow selection of patients with SCLC to FGFR1 inhibitor therapy.
The microdissected gene expression landscape of nasopharyngeal cancer reveals vulnerabilities in FGF and noncanonical NF-κB signaling

Science advances

2022 Apr 08

Tay, JK;Zhu, C;Shin, JH;Zhu, SX;Varma, S;Foley, JW;Vennam, S;Yip, YL;Goh, CK;Wang, Y;Loh, KS;Tsao, SW;Le, QT;Sunwoo, JB;West, RB;
PMID: 35394843 | DOI: 10.1126/sciadv.abh2445

Nasopharyngeal cancer (NPC) is an Epstein-Barr virus (EBV)-positive epithelial malignancy with an extensive inflammatory infiltrate. Traditional RNA-sequencing techniques uncovered only microenvironment signatures, while the gene expression of the tumor epithelial compartment has remained a mystery. Here, we use Smart-3SEQ to prepare transcriptome-wide gene expression profiles from microdissected NPC tumors, dysplasia, and normal controls. We describe changes in biological pathways across the normal to tumor spectrum and show that fibroblast growth factor (FGF) ligands are overexpressed in NPC tumors, while negative regulators of FGF signaling, including SPRY1, SPRY2, and LGALS3, are down-regulated early in carcinogenesis. Within the NF-κB signaling pathway, the critical noncanonical transcription factors, RELB and NFKB2, are enriched in the majority of NPC tumors. We confirm the responsiveness of EBV-positive NPC cell lines to targeted inhibition of these pathways, reflecting the heterogeneity in NPC patient tumors. Our data comprehensively describe the gene expression landscape of NPC and unravel the mysteries of receptor tyrosine kinase and NF-κB pathways in NPC.
Molecular and immunologic analysis of laryngeal squamous cell carcinoma in smokers and non-smokers.

American Journal of Otolaryngology

2018 Nov 22

Malm IJ, Rooper LM, Bishop JA, Ozgursoy SK, Hillel AT, Akst LM, Best SR.
PMID: - | DOI: 10.1016/j.amjoto.2018.11.009

Abstract

Background

Laryngeal squamous cell carcinoma (LSCC) is strongly associated with tobacco use, but recent reports suggest an increasing incidence of LSCC in patients without traditional risk factors, suggesting an alternative etiology of tumorigenesis. The purpose of this study is to characterize this non-smoking population and to compare immunohistochemical markers in tumor specimens from non-smokers and smokers with LSCC.

Methods

A retrospective chart review of patients with LSCC at Johns Hopkins Hospital (JHH) was performed. A tissue microarray (TMA) was constructed with tumor specimen from non-smokers with stage and age-matched smokers and stained for a variety of immunologic and molecular targets.

Results

In the JHH cohort of 521 patients, 12% (n = 63) were non-smokers. Non-smokers were more likely to be <45 years old at time of diagnosis (OR 4.13, p = 0.001) and to have glottic tumors (OR 2.46, p = 0.003). The TMA was comprised of tumors from 34 patients (14 non-smokers, 20 smokers). Only 2 patients (6%) were human-papillomavirus (HPV) positive by high-risk RNA in situ hybridization (ISH). There was no correlation between smoking status and p16 (p = 0.36), HPV-ISH positivity (p = 0.79), phosphatase and tensin homolog (PTEN, p = 0.91), p53 (p = 0.14), or programmed death-ligand 1 (PD-L1, p = 0.27) expression.

Conclusions

Non-smokers with LSCC are more likely to be younger at the time of diagnosis and have glottic tumors than smokers with LSCC. In TMA analysis of stage and age-matched specimens from smoker and non-smokers with LSCC, the pattern of expression for common molecular and immunologic markers is similar. Further, HPV does not appear to be a major causative etiology of LSCC in either smokers or non-smokers in our cohort of patients.

Co-expression of SOX2 and HR-HPV RISH predicts poor prognosis in small cell neuroendocrine carcinoma of the uterine cervix

BMC cancer

2021 Mar 31

Zhang, SW;Luo, RZ;Sun, XY;Yang, X;Yang, HX;Xiong, SP;Liu, LL;
PMID: 33789601 | DOI: 10.1186/s12885-021-08059-1

Small cell neuroendocrine carcinoma of the uterine cervix (SCNEC) is a rare cancer involving the human papilloma virus (HPV), and has few available treatments. The present work aimed to assess the feasibility of SOX2 and HPV statuses as predictive indicators of SCNEC prognosis. The associations of SOX2 and/or high-risk (HR)-HPV RNA in situ hybridization (RISH) levels with clinicopathological characteristics and prognostic outcomes for 88 neuroendocrine carcinoma (NEC) cases were analyzed. Among these patients with SCNEC, SOX2, P16INK4A and HR-HPV RISH expression and SOX2/HR-HPV RISH co-expression were detected in 68(77.3%), 76(86.4%), 73(83.0%), and 48(54.5%), respectively. SOX2-positive and HR-HPV RISH-positive SCNEC cases were associated with poorer overall survival (OS, P = 0.0170, P = 0.0451) and disease-free survival (DFS, P = 0.0334, P = 0.0309) compared with those expressing low SOX2 and negative HR-HPV RISH. Alternatively, univariate analysis revealed that SOX2 and HR-HPV RISH expression, either separately or in combination, predicted the poor prognosis of SCNEC patients. Multivariate analysis revealed that the co-expression of SOX2 with HR-HPV RISH may be an independent factor of OS [hazard ratio = 3.597; 95% confidence interval (CI): 1.085-11.928; P = 0.036] and DFS [hazard ratio = 2.880; 95% CI: 1.199-6.919; P = 0.018] prediction in SCNEC. Overall, the results of the present study suggest that the co-expression of SOX2 with HR-HPV RISH in SCNEC may represent a specific subgroup exhibiting remarkably poorer prognostic outcomes compared with the expression of any one marker alone.
HPV RNA in situ hybridization can inform cervical cytology-histology correlation.

Cancer Cytopathol.

2018 Jul 05

Coppock JD, Willis BC, Stoler MH, Mills AM.
PMID: 29975461 | DOI: 10.1002/cncy.22027

Abstract

BACKGROUND:

In situ hybridization for human papillomavirus (HPV) messenger RNA (HPV RNA ISH) recently was introduced as an ancillary tool in the diagnosis of cervical squamous intraepithelial lesions, and can aid in the distinction between low-grade squamous intraepithelial lesions (LSILs) versus reactive/negative biopsies. Prior work has shown that up to one-half of cases originally diagnosed as LSIL are reclassified as negative/reactive by expert consensus review of morphology, and negative HPV RNA ISH results most often correlate with an expert diagnosis of negative/reactive. Given that LSIL overdiagnoses on biopsy may result in the erroneous clinical impression that a cervical lesion has been sampled appropriately, the authors proposed that HPV RNA ISH can inform cytology-histology correlation for challenging LSIL biopsies.

METHODS:

A total of 92 cervical biopsies originally diagnosed as LSIL were reviewed by 3 gynecologic pathologists and reclassified based on consensus opinion of morphology. ISH was performed for high-risk and low-risk HPV E6/E7 mRNA. Prior/concurrent cytology results were collected.

RESULTS:

Based on expert consensus morphologic review, 49% of biopsies (45 of 92 biopsies) originally diagnosed as LSIL were reclassified as negative, 6.5% (6 of 92 biopsies) were reclassified as high-grade squamous intraepithelial lesion, and 44.5% (41 of 92 biopsies) were maintained as LSIL. The majority of LSIL biopsies reclassified as negative (80%; 36 of 45 biopsies) were HPV RNA negative, whereas 93% of LSIL biopsies (39 of 41 biopsies) and 100% of high-grade squamous intraepithelial lesion biopsies were HPV RNA positive.

CONCLUSIONS:

LSIL often is overdiagnosed by morphology on biopsy, potentially leading to the false impression that a lesion identified on cytology has been sampled. Performing RNA ISH on biopsies decreases histologic LSIL overdiagnosis, and potentially can prompt further sampling when there is cytology-histology discordance.

Cytopathologic characteristics of HPV‐related small cell carcinoma of the oropharynx

Cancer Cytopathol.

2018 Nov 23

Allison DB, Rooper LM, Mustafa S, Maleki Z, Wakely PE Jr, Ali SZ.
PMID: 30468701 | DOI: 10.1002/cncy.22078

Abstract

BACKGROUND:

Human papillomavirus (HPV)-related squamous cell carcinoma (SqCC) of the oropharynx is an epidemiologically and clinically distinct form of SqCC that is associated with an improved prognosis. However, HPV-related small cell carcinoma of the oropharynx is a rare and newly described variant that is associated with aggressive clinical behavior and poor outcomes. To date, fewer than 2 dozen reports of this entity exist in the literature, and there is no discussion of cytopathologic features. This article reports 6 cases and discusses the salient cytomorphologic findings, ancillary studies, and challenges when this entity is encountered.

METHODS:

Anatomic pathology archives were searched to identify patients with a diagnosis of HPV-related small cell carcinoma of the oropharynx. Medical records were reviewed to document the following: age, sex, smoking status, other relevant clinical history, primary location, treatment, and clinical outcome. Both p16 and high-risk HPV in situ hybridization (ISH) studies were positive in at least 1 specimen from each patient. The pathologic diagnoses, cytomorphologic characteristics, immunocytochemical stains, and HPV ISH studies were reviewed and recorded for all available cases.

RESULTS:

Six patients with 11 cytopathology specimens of HPV-related small cell carcinoma of the oropharynx were identified. The mean age was 61.3 years, and all patients died with widely metastatic disease (mean, 23 months; range, 12-48 months). Mixed small cell carcinoma and SqCC components were present in half of the cases.

CONCLUSIONS:

The identification of a small cell component can be reliably performed with cytology preparations and is crucial because this (and not the HPV status) determines the prognosis.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?