Mou, TM;Lane, MV;Ireland, DDC;Verthelyi, D;Tonelli, LH;Clark, SM;
PMID: 35995342 | DOI: 10.1016/j.nbd.2022.105840
An early inflammatory insult is the most recognized risk factor associated with neurodevelopmental psychiatric disorders, even more so than genetic variants. Notably, complement component 4 (C4), a molecule involved in inflammatory responses, has been strongly associated with schizophrenia (SZ) and its role in other neurodevelopmental disorders, such as autism (ASD), is an area of active investigation. However, while C4 in SZ has been implicated in the context of synaptic pruning, little is known about its neuroinflammatory role. The subventricular zone (SVZ) is a region heavily involved in neurodevelopment and neuroimmune interactions through the lifespan; thus, it is a region wherein C4 may play a vital role in disease pathology. Using in situ hybridization with radioactive riboprobes and RNAscope, we identified robust astrocytic expression of C4 in the SVZ and in the septum pellucidum. C4 was also expressed in ependyma, neurons, and Ki67+ progenitor cells. Examination of mRNA levels showed elevated C4 in both ASD and SZ, with higher expression in SZ compared to controls. Targeted transcriptomic analysis of inflammatory pathways revealed a strong association of complement system genes with SZ, and to a lesser extent, ASD, as well as generalized immune dysregulation without a strong association with known infectious pathways. Analysis of differentially expressed genes (DEGs) showed that ASD DEGs were enriched in adaptive immune system functions such as Th cell differentiation, while SZ DEGs were enriched in innate immune system functions, including NF-κB and toll like receptor signaling. Moreover, the number of Ki67+ cells was significantly higher in ASD compared to SZ and controls. Taken together, these results support a role for C4 into inflammatory-neuroimmune dysregulation observed in SZ and ASD pathology.
Underwood, CF;Burke, PGR;Kumar, NN;Goodchild, AK;McMullan, S;Phillips, JK;Hildreth, CM;
PMID: 35654013 | DOI: 10.1159/000525337
Angiotensin (Ang) II signalling in the hypothalamic paraventricular nucleus (PVN) via angiotensin type-1a receptors (AT1R) regulates vasopressin release and sympathetic nerve activity - two effectors of blood pressure regulation. We determined the cellular expression and function of AT1R in the PVN of a rodent model of polycystic kidney disease (PKD), the Lewis Polycystic Kidney (LPK) rat, to evaluate its contribution to blood pressure regulation and augmented vasopressin release in PKD.PVN AT1R gene expression was quantified with fluorescent in-situ hybridisation in LPK and control rats. PVN AT1R function was assessed with pharmacology under urethane anaesthesia in LPK and control rats instrumented to record arterial pressure and sympathetic nerve activity.AT1R gene expression was upregulated in the PVN, particularly in CRH neurons, of LPK versus control rats. PVN microinjection of Ang II produced larger increases in systolic blood pressure in LPK versus control rats (36±5 vs. 17±2 mmHg; P<0.01). Unexpectedly, Ang II produced regionally heterogeneous sympathoinhibition (renal: -33%; splanchnic: -12%; lumbar no change) in LPK and no change in controls. PVN pre-treatment with losartan, a competitive AT1R antagonist, blocked the Ang II-mediated renal sympathoinhibition and attenuated the pressor response observed in LPK rats. The Ang II pressor effect was also blocked by systemic OPC-21268, a competitive V1A receptor antagonist, but unaffected by hexamethonium, a sympathetic ganglionic blocker.Collectively, our data suggest that upregulated AT1R expression in PVN sensitises neuroendocrine release of vasopressin in the LPK, identifying a central mechanism for the elevated vasopressin levels present in PKD.The Author(s).
Kashima DT, Grueter BA.
PMID: 28760987 | DOI: 10.1073/pnas.1705974114
Behavioral manifestations of drug-seeking behavior are causally linked to alterations of synaptic strength onto nucleus accumbens (NAc) medium spiny neurons (MSN). Although neuron-driven changes in physiology and behavior are well characterized, there is a lack of knowledge of the role of the immune system in mediating such effects. Toll-like receptor 4 (TLR4) is a pattern recognition molecule of the innate immune system, and evidence suggests that it modulates drug-related behavior. Using TLR4 knockout (TLR4.KO) mice, we show that TLR4 plays a role in NAc synaptic physiology and behavior. In addition to differences in the pharmacological profile of N-methyl-d-aspartate receptors (NMDAR) in the NAc core, TLR4.KO animals exhibit a deficit in low-frequency stimulation-induced NMDAR-dependent long-term depression (LTD). Interestingly, the synaptic difference is region specific as no differences were found in excitatory synaptic properties in the NAc shell. Consistent with altered NAc LTD, TLR4.KO animals exhibit an attenuation in drug reward learning. Finally, we show that TLR4 in the NAc core is primarily expressed on microglia. These results suggest that TLR4 influences NAc MSN synaptic physiology and drug reward learning and behavior.
Li S, Uno Y, Rudolph U, Cobb J, Liu J, Anderson T, Levy D, Balu DT, Coyle JT.
PMID: 29305854 | DOI: 10.1016/j.bcp.2017.12.023
D-Serine is a co-agonist at forebrain N-methyl-D-aspartate receptors (NMDAR) and is synthesized by serine racemase (SR). Although D-serine and SR were originally reported to be localized to glia, recent studies have provided compelling evidence that under healthy physiologic conditions both are localized primarily in neurons. However, in pathologic conditions, reactive astrocytes can also express SR and synthesize D-serine. Since cultured astrocytes exhibit features of reactive astrocytes, we have characterized D-serine synthesis and the expression of enzymes involved in its disposition in primary glial cultures. The levels of SR were quite low early in culture and increased markedly in all astrocytes with the duration in vitro. The concentration of D-serine in the culture medium increased in parallel with SR expression in the astrocytes. Microglia, identified by robust expression of Iba1, did not express SR. While the levels of glial fibrillary acidic protein (GFAP), glycine decarboxylase (GLDC) and phosphoglycerate dehydrogenase (PHGDH), the initial enzyme in the pathway converting glycine to L-serine, remained constant in culture, the expression of lipocalin-2, a marker for pan-reactive astrocytes, increased several-fold. The cultured astrocytes also expressed Complement-3a, a marker for a subpopulation of reactive astrocytes (A1). Astrocytes grown from mice with a copy number variant associated with psychosis, which have four copies of the GLDC gene, showed a more rapid production of D-serine and a reduction of glycine in the culture medium. These results substantiate the conclusion that A1 reactive astrocytes express SR and release D-serine under pathologic conditions, which may contribute to their neurotoxic effects by activating extra-synaptic NMDARs.
Key role for hypothalamic interleukin-6 in food-motivated behavior and body weight regulation
López-Ferreras, L;Longo, F;Richard, J;Eerola, K;Shevchouk, O;Tuzinovic, M;Skibicka, K;
| DOI: 10.1016/j.psyneuen.2021.105284
The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior.
Shi MM, Fan KM, Qiao YN, Xu JH, Qiu LJ, Li X, Liu Y, Qian ZQ, Wei CL, Han J, Fan J, Tian YF, Ren W, Liu ZQ.
PMID: 31142818 | DOI: 10.1038/s41380-019-0435-z
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAAreceptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Yosten GL, Harada CM, Haddock CJ, Giancotti LA, Kolar GR, Patel R, Guo C, Chen Z, Zhang J, Doyle TM, Dickenson AH, Samson WK, Salvemini D.
PMID: 31999650 | DOI: 10.1172/JCI133270
Treating neuropathic pain is challenging and novel non-opioid based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence and in situ hybridization, we found the expression of the orphan GPCR (oGPCR) Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord (DH-SC) following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal (i.th.) CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights to its signaling pathways. CARTp is involved in many diseases including depression, reward and addiction, de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease
Griffiths PR, Lolait SJ, Bijabhai A, O'Carroll-Lolait A, Paton JFR, O'Carroll AM
PMID: 32315363 | DOI: 10.1371/journal.pone.0231844
The vascular organ of the lamina terminalis, subfornical organ (SFO), and area postrema comprise the sensory circumventricular organs (CVO) which are central structures that lie outside the blood brain barrier and are thought to provide an interface between peripherally circulating signals and the brain through their projections to central autonomic structures. The SFO expresses mRNA for the G protein-coupled apelin receptor (APJ, gene name aplnr) and exogenous microinjection of the neuropeptide apelin (apln) to the SFO elicits a depressor effect. Here we investigated the expression and cellular distribution of aplnr, apln and the recently described ligand apela (apela) in the CVOs and investigated whether differences in the levels of expression of apelinergic gene transcripts in these regions might underlie the chronic elevated blood pressure seen in hypertension. We carried out multiplex in situ hybridization histochemistry on CVO tissue sections from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. Confocal immunofluorescent images indicated strong aplnr expression, with lower levels of apln and modest apela expression, in the CVOs of both WKY rats and SHRs, in both neurons and glia. The expression level of aplnr transcripts was increased in the SFO of SHRs compared to WKY rats. Our data may highlight a potential dysfunction in the communication between CVOs and downstream signalling pathways in SHRs, which may contribute to its different phenotype/s
Pook C, Ahrens JM, Clagett-Dame M
PMID: 32081718 | DOI: 10.1016/j.gep.2020.119099
Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR). These studies support full-length Nav2 transcript as the predominant form in the wild-type mouse CNS. The developing cortex, hippocampus, thalamus, olfactory bulb, and granule cells (GC) within the cerebellum show the highest expression, with a similar staining pattern using either the 5'Nav2 or 3'Nav2 probe. Nav2 is expressed in GC precursors migrating over the cerebellar primordium as well as in the postmitotic premigratory cells of the external granule cell layer (EGL). It is expressed in the cornu ammonis (CA) and dentate gyrus (DG) throughout hippocampal development. In situ hybridization was combined with immunohistochemistry for Ki67, CTIP2 and Nissl staining to follow Nav2 transcript location during cortical development, where it is observed in neuroepithelial cells exiting the germinal compartments, as well as later in the cortical plate (CP) and developing cortical layers. The highest levels of Nav2 in all brain regions studied are observed in late gestation and early postnatal life which coincides with times when neurons are migrating and differentiating. A hypomorphic mouse that lacks the full-length transcript but expresses shorter transcript shows little staining in the CNS with either probe set except at the base of the cerebellum, where a shorter Nav2 transcript is detected. Using dual fluorescent probe in situ hybridization studies, these cells are identified as oligodendrocytes and are detected using both Olig1 and the 3'Nav2 probe. The identification of full-length Nav2 as the primary transcript in numerous brain regions suggests NAV2 could play a role in CNS development beyond that of its well-established role in the cerebellum
Porniece Kumar, M;Cremer, AL;Klemm, P;Steuernagel, L;Sundaram, S;Jais, A;Hausen, AC;Tao, J;Secher, A;Pedersen, TÅ;Schwaninger, M;Wunderlich, FT;Lowell, BB;Backes, H;Brüning, JC;
PMID: 34931084 | DOI: 10.1038/s42255-021-00499-0
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z.
PMID: 31023379 | DOI: 10.1186/s40478-019-0709-3
The heterogeneity of multiple sclerosis is reflected by dynamic changes of different lesion types in the brain white matter (WM). To identify potential drivers of this process, we RNA-sequenced 73 WM areas from patients with progressive MS (PMS) and 25 control WM. Lesion endophenotypes were described by a computational systems medicine analysis combined with RNAscope, immunohistochemistry, and immunofluorescence. The signature of the normal-appearing WM (NAWM) was more similar to control WM than to lesions: one of the six upregulated genes in NAWM was CD26/DPP4 expressed by microglia. Chronic active lesions that become prominent in PMS had a signature that were different from all other lesion types, and were differentiated from them by two clusters of 62 differentially expressed genes (DEGs). An upcoming MS biomarker, CHI3L1 was among the top ten upregulated genes in chronic active lesions expressed by astrocytes in the rim. TGFβ-R2 was the central hub in a remyelination-related protein interaction network, and was expressed there by astrocytes. We used de novo networks enriched by unique DEGs to determine lesion-specific pathway regulation, i.e. cellular trafficking and activation in active lesions; healing and immune responses in remyelinating lesions characterized by the most heterogeneous immunoglobulin gene expression; coagulation and ion balance in inactive lesions; and metabolic changes in chronic active lesions. Because we found inverse differential regulation of particular genes among different lesion types, our data emphasize that omics related to MS lesions should be interpreted in the context of lesion pathology. Our data indicate that the impact of molecular pathways is substantially changing as different lesions develop. This was also reflected by the high number of unique DEGs that were more common than shared signatures. A special microglia subset characterized by CD26 may play a role in early lesion development, while astrocyte-derived TGFβ-R2 and TGFβ pathways may be drivers of repair in contrast to chronic tissue damage. The highly specific mechanistic signature of chronic active lesions indicates that as these lesions develop in PMS, the molecular changes are substantially skewed: the unique mitochondrial/metabolic changes and specific downregulation of molecules involved in tissue repair may reflect a stage of exhaustion.
The journal of headache and pain
Zhang, L;Lu, C;Kang, L;Li, Y;Tang, W;Zhao, D;Yu, S;Liu, R;
PMID: 35033010 | DOI: 10.1186/s10194-021-01382-9
Astrocytic activation might play a significant role in the central sensitization of chronic migraine (CM). However, the temporal characteristics of the astrocytic activation in the trigeminal nucleus caudalis (TNC) and the molecular mechanism under the process remain not fully understood. Therefore, this study aims to investigate the duration and levels change of astrocytic activation and to explore the correlation between astrocytic activation and the levels change of cytokines release.We used a mice model induced by recurrent dural infusion of inflammatory soup (IS). The variation with time of IS-induced mechanical thresholds in the periorbital and hind paw plantar regions were evaluated using the von Frey filaments test. We detected the expression profile of glial fibrillary acidic protein (GFAP) in the TNC through immunofluorescence staining and western blot assay. We also investigated the variation with time of the transcriptional levels of GFAP and ionized calcium binding adapter molecule 1 (Iba1) through RNAscope in situ hybridization analysis. Then, we detected the variation with time of cytokines levels in the TNC tissue extraction and serum, including c-c motif chemokine ligand 2 (CCL2), c-c motif chemokine ligand 5 (CCL5), c-c motif chemokine ligand 7 (CCL7), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 1 (CXCL1), c-x-c motif chemokine ligand 13 (CXCL13), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), macrophage colony-stimulating factor (M-CSF), interleukin 1beta (IL-1β), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 17A (IL-17A).Recurrent IS infusion resulted in cutaneous allodynia in both the periorbital region and hind paw plantar, ranging from 5 d (after the second IS infusion) to 47 d (28 d after the last infusion) and 5 d to 26 d (7 d after the last infusion), respectively. The protein levels of GFAP and messenger ribonucleic acid (mRNA) levels of GFAP and Iba1 significantly increased and sustained from 20 d to 47 d (1 d to 28 d after the last infusion), which was associated with the temporal characteristics of astrocytic activation in the TNC. The CCL7 levels in the TNC decreased from 20 d to 47 d. But the CCL7 levels in serum only decreased on 20 d (1 d after the last infusion). The CCL12 levels in the TNC decreased on 22 d (3 d after the last infusion) and 33 d (14 d after the last infusion). In serum, the CCL12 levels only decreased on 22 d. The IL-10 levels in the TNC increased on 20 d.Our results indicate that the astrocytic activation generated and sustained in the IS-induced mice model from 1 d to 28 d after the last infusion and may contribute to the pathology through modulating CCL7, CCL12, and IL-10 release.