PLoS neglected tropical diseases
Langerak, T;Broekhuizen, M;Unger, PA;Tan, L;Koopmans, M;van Gorp, E;Danser, AHJ;Rockx, B;
PMID: 35442976 | DOI: 10.1371/journal.pntd.0010359
A Zika virus (ZIKV) infection during pregnancy can result in severe birth defects such as microcephaly. To date, it is incompletely understood how ZIKV can cross the human placenta. Furthermore, results from studies in pregnant mice and non-human primates are conflicting regarding the role of cross-reactive dengue virus (DENV) antibodies on transplacental ZIKV transmission. Elucidating how ZIKV can cross the placenta and which risk factors contribute to this is important for risk assessment and for potential intervention strategies for transplacental ZIKV transmission. In this study we use an ex vivo human placental perfusion model to study transplacental ZIKV transmission and the effect that cross-reactive DENV antibodies have on this transmission. By using this model, we demonstrate that DENV antibodies significantly increase ZIKV uptake in perfused human placentas and that this increased uptake is neonatal Fc-receptor-dependent. Furthermore, we show that cross-reactive DENV antibodies enhance ZIKV infection in term human placental explants and in primary fetal macrophages but not in primary trophoblasts. Our data supports the hypothesis that presence of cross-reactive DENV antibodies could be an important risk factor for transplacental ZIKV transmission. Furthermore, we demonstrate that the ex vivo placental perfusion model is a relevant and animal friendly model to study transplacental pathogen transmission.
Liu J, Kline BA, Kenny TA, Smith DR, Soloveva V, Beitzel B, Pang S, Lockett S, Hess HF, Palacios G, Kuhn JH, Sun MG, Zeng X.
PMID: 29691373 | DOI: 10.1038/s41426-018-0071-8
Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.
Yan, JJ;Ding, XJ;He, T;Chen, AX;Zhang, W;Yu, ZX;Cheng, XY;Wei, CY;Hu, QD;Liu, XY;Zhang, YL;He, M;Xie, ZY;Zha, X;Xu, C;Cao, P;Li, H;Xu, XH;
PMID: 36463200 | DOI: 10.1038/s41467-022-35211-7
Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
Ilanges, A;Shiao, R;Shaked, J;Luo, JD;Yu, X;Friedman, JM;
PMID: 36071158 | DOI: 10.1038/s41586-022-05161-7
Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.
Shinmyo, Y;Saito, K;Hamabe-Horiike, T;Kameya, N;Ando, A;Kawasaki, K;Duong, TAD;Sakashita, M;Roboon, J;Hattori, T;Kannon, T;Hosomichi, K;Slezak, M;Holt, MG;Tajima, A;Hori, O;Kawasaki, H;
PMID: 35275722 | DOI: 10.1126/sciadv.abi5209
The development and evolution of mammalian higher cognition are represented by gyrification of the laminar cerebral cortex and astrocyte development, but their mechanisms and interrelationships remain unknown. Here, we show that localized astrogenesis plays an important role in gyri formation in the gyrencephalic cerebral cortex. In functional genetic experiments, we show that reducing astrocyte number prevents gyri formation in the ferret cortex, while increasing astrocyte number in mice, which do not have cortical folds, can induce gyrus-like protrusions. Morphometric analyses demonstrate that the vertical expansion of deep pallial regions achieved by localized astrogenesis is crucial for gyri formation. Furthermore, our findings suggest that localized astrogenesis by a positive feedback loop of FGF signaling is an important mechanism underlying cortical folding in gyrencephalic mammalian brains. Our findings reveal both the cellular mechanisms and the mechanical principle of gyrification in the mammalian brain.
Brain Struct Funct. 2014 Nov 27.
de Kloet AD, Wang L, Ludin JA, Smith JA, Pioquinto DJ, Hiller H, Steckelings UM, Scheuer DA, Sumners C, Krause EG.
PMID: 25427952
Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.
Sun, L;Zhu, M;Wang, M;Hao, Y;Hao, Y;Jing, X;Yu, H;Shi, Y;Zhang, X;Wang, S;Yuan, F;Yuan, XS;
PMID: 37348822 | DOI: 10.1016/j.brainresbull.2023.110693
The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTSLepRb neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing. However, the monosynaptic inputs and outputs of NTSLepRb neurons in whole-brain mapping remain to be elucidated. Therefore, the exploration of its whole-brain connection system may provide strong support for comprehensively understanding the physiological and pathological functions of NTSLepRb neurons. In the present study, we used a cell type-specific, modified rabies virus and adeno-associated virus with the Cre-loxp system to map monosynaptic inputs and outputs of NTSLepRb neurons in LepRb-Cre mice. The results showed that NTSLepRb neurons received inputs from 48 nuclei in the whole brain from five brain regions, including especially the medulla. We found that NTSLepRb neurons received inputs from nuclei associated with respiration, such as the pre-Bötzinger complex, ambiguus nucleus, and parabrachial nucleus. Interestingly, some brain areas related to cardiovascular regulation-i.e., the ventrolateral periaqueductal gray and locus coeruleus-also sent a small number of inputs to NTSLepRb neurons. In addition, anterograde tracing results demonstrated that NTSLepRb neurons sent efferent projections to 15 nuclei, including the dorsomedial hypothalamic nucleus and arcuate hypothalamic nucleus, which are involved in regulation of energy metabolism and feeding behaviors. Quantitative statistical analysis revealed that the inputs of the whole brain to NTSLepRb neurons were significantly greater than the outputs. Our study comprehensively revealed neuronal connections of NTSLepRb neurons in the whole brain and provided a neuroanatomical basis for further research on physiological and pathological functions of NTSLepRb neurons.
Xu J, Molinas AJR, Mukerjee S, Morgan DA, Rahmouni K, Zsombok A, Lazartigues E.
PMID: 31006330 | DOI: 10.1161/HYPERTENSIONAHA.119.12832
Chronic activation of the brain renin-angiotensin system contributes to the development of hypertension by altering autonomic balance. Beyond the essential role of Ang II (angiotensin II) type 1 receptors, ADAM17 (A disintegrin and metalloprotease 17) is also found to promote brain renin-angiotensin system overactivation. ADAM17 is robustly expressed in various cell types within the central nervous system. The aim of this study was to determine whether ADAM17 modulates presympathetic neuronal activity to promote autonomic dysregulation in salt-sensitive hypertension. To test our hypothesis, ADAM17 was selectively knocked down in glutamatergic neurons using Cre-loxP technology. In mice lacking ADAM17 in glutamatergic neurons, the blood pressure increase induced by deoxycorticosterone acetate-salt treatment was blunted. Deoxycorticosterone acetate-salt significantly elevated cardiac and vascular sympathetic drive in control mice, while such effects were reduced in mice with ADAM17 knockdown. This blunted sympathoexcitation was extended to the spleen, with a lesser activation of the peripheral immune system, translating into a sequestration of circulating T cells within this organ, compared with controls. Within the paraventricular nucleus, Ang II-induced activation of kidney-related presympathetic glutamatergic neurons was reduced in ADAM17 knockdown mice, with the majority of cells no longer responding to Ang II stimulation, confirming the supportive role of ADAM17 in increasing presympathetic neuronal activity. Overall, our data highlight the pivotal role of neuronal ADAM17 in regulating sympathetic activity and demonstrate that activation of ADAM17 in glutamatergic neurons leads to a selective increase of sympathetic output, but not vagal tone, to specific organs, ultimately contributing to dysautonomia and salt-sensitive hypertension.
Kroeger, D;Thundercliffe, J;Phung, A;De Luca, R;Geraci, C;Bragg, S;McCafferty, KJ;Bandaru, SS;Arrigoni, E;Scammell, TE;
PMID: 36170177 | DOI: 10.1093/sleep/zsac242
The pedunculopontine tegmental nucleus (PPT) is implicated in many brain functions, ranging from sleep/wake control and locomotion, to reward mechanisms and learning. The PPT contains cholinergic, GABAergic and glutamatergic neurons with extensive ascending and descending axonal projections. Glutamatergic PPT (PPT vGlut2) neurons are thought to promote wakefulness, but the mechanisms through which this occurs are unknown. In addition, some researchers propose that PPT vGlut2 neurons promote locomotion, yet even though the PPT is a target for deep brain stimulation in Parkinson's disease, the role of the PPT in locomotion is debated. We hypothesized that PPT vGluT2 neurons drive arousal and specific waking behaviors via certain projections and modulate locomotion via others.We mapped the axonal projections of PPT vGlut2 neurons using conditional anterograde tracing and then photostimulated PPT vGlut2 soma or their axon terminal fields across sleep/wake states and analyzed sleep/wake behavior, muscle activity, and locomotion in transgenic mice.We found that stimulation of PPT vGlut2 soma and their axon terminals rapidly triggered arousals from NREM sleep, especially with activation of terminals in the basal forebrain (BF) and lateral hypothalamus (LH). With photoactivation of PPT vGlut2 terminals in the BF and LH, this wakefulness was accompanied by locomotion and other active behaviors, but stimulation of PPT vGlut2 soma and terminals in the substantia nigra triggered only quiet wakefulness without locomotion.These findings demonstrate the importance of the PPT vGluT2 neurons in driving various aspects of arousal and show that heterogeneous brain nuclei, such as the PPT, can promote a variety of behaviors via distinct axonal projections.
Scott JM, Lebratti TJ, Richner JM, Jiang X, Fernandez E, Zhao H, Fremont DH, Diamond MS, Shin H.
PMID: 29343577 | DOI: 10.1128/JVI.00038-18
Zika virus (ZIKV), which can cause devastating disease in fetuses of infected pregnant women, can be transmitted by mosquito inoculation and sexual routes. Little is known about immune protection against sexually transmitted ZIKV. In this study, we show that previous infection through intravaginal or subcutaneous routes with a contemporary Brazilian strain of ZIKV can protect against subsequent intravaginal challenge with a homologous strain. Both routes of inoculation induced high titers of ZIKV-specific and neutralizing antibody in serum and the vaginal lumen. Virus-specific T cells were recruited to and retained in the female reproductive tract after intravaginal and subcutaneous ZIKV infection. Studies in mice with genetic or acquired deficiencies in B and/or T cells demonstrated that both lymphocyte populations redundantly protect against intravaginal challenge in ZIKV-immune animals. Passive transfer of ZIKV immune IgG or T cells significantly limited intravaginal infection of naïve mice, although antibody more effectively prevented dissemination throughout the reproductive tract. Collectively, our experiments begin to establish the immune correlates of protection against intravaginal ZIKV infection, which should inform vaccination strategies in non-pregnant and pregnant women.IMPORTANCE The recent ZIKV epidemic resulted in devastating outcomes in fetuses and may affect reproductive health. Unlike other flaviviruses, ZIKV can be spread by sexual contact as well as a mosquito vector. While previous studies have identified correlates of protection for mosquito-mediated infection, few have focused on immunity against sexual transmission. As exposure to ZIKV via mosquito bite has likely occurred to many living in endemic areas, our study addresses whether this route of infection can protect against subsequent sexual exposure. We demonstrate that subcutaneous ZIKV infection can protect against subsequent vaginal infection by generating both local antiviral T cell and antibody responses. Our research begins to define the immune correlates of protection for ZIKV infection in the vagina and provides a foundation for testing ZIKV vaccines against sexual transmission
VGLUT2 is a determinant of dopamine neuron resilience in a rotenone model of dopamine neurodegeneration
The Journal of neuroscience : the official journal of the Society for Neuroscience
Buck, SA;Miranda, BR;Logan, RW;Fish, KN;Greenamyre, JT;Freyberg, Z;
PMID: 33893220 | DOI: 10.1523/JNEUROSCI.2770-20.2021
Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the substantia nigra pars compacta (SNc). In contrast, DA neurons in the ventral tegmental area (VTA) are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the nucleus accumbens, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared to DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT:Environmental exposures to pesticides contribute significantly to pathological processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone, and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.
Cifuentes Kottkamp A, De Jesus E, Grande R, Brown JA, Jacobs AR, Lim JK and Stapleford KA
PMID: 30894466 | DOI: 10.1128/jvi.00389-19
Arthropod-borne viruses represent a significant public health threat worldwide yet there are few antiviral therapies or prophylaxis targeting these pathogens. In particular, the development of novel antivirals for high-risk populations such as pregnant women is essential to prevent devastating disease such as that which was experienced with the recent outbreak of Zika virus (ZIKV) in the Americas. One potential avenue to identify new and pregnancy-acceptable antiviral compounds is to repurpose well-known and widely used FDA approved drugs. In this study, we addressed the antiviral role of atovaquone, a FDA Pregnancy Category C drug and pyrimidine biosynthesis inhibitor used for the prevention and treatment of parasitic infections. We found that atovaquone was able to inhibit ZIKV and chikungunya virus virion production in human cells and that this antiviral effect occurred early during infection at the initial steps of viral RNA replication. Moreover, we were able to complement viral replication and virion production with the addition of exogenous pyrimidine nucleosides indicating that atovaquone is functioning through the inhibition of the pyrimidine biosynthesis pathway to inhibit viral replication. Finally, using an ex vivo human placental tissue model, we found that atovaquone could limit ZIKV infection in a dose-dependent manner providing evidence that atovaquone may function as an antiviral in humans. Taken together, these studies suggest that atovaquone could be a broad-spectrum antiviral drug and a potential attractive candidate for the prophylaxis or treatment of arbovirus infection in vulnerable populations, such as pregnant women and children.IMPORTANCE The ability to protect vulnerable populations such as pregnant women and children from Zika virus and other arbovirus infections is essential to preventing the devastating complications induced by these viruses. One class of antiviral therapies may lie in known pregnancy-acceptable drugs that have the potential to mitigate arbovirus infections and disease yet this has not been explored in detail. In this study, we show that the common antiparasitic drug, atovaquone, inhibits arbovirus replication through intracellular nucleotide depletion and can impair ZIKV infection in an ex vivo human placental explant model. Our study provides a novel function for atovaquone and highlights that the rediscovery of pregnancy-acceptable drugs with potential antiviral effects can be the key to better addressing the immediate need for treating viral infections and preventing potential birth complications and future disease.