ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell Tissue Res.
2018 Jun 05
Thorsvik S, Bakke I, van Beelen Granlund A, Røyset ES, Damås JK, Østvik AE, Sandvik AK.
PMID: 29869714 | DOI: 10.1007/s00441-018-2860-8
The antimicrobial glycoprotein neutrophil gelatinase-associated lipocalin (NGAL) is strongly expressed in several infectious, inflammatory and malignant disorders, among these inflammatory bowel disease (IBD). Fecal and serum NGAL is elevated during active IBD and we have recently shown that fecal NGAL is a novel biomarker for IBD with a test performance comparable to the established fecal biomarker calprotectin. This study examines expression of NGAL in the healthy gut and in Crohn's disease (CD), with emphasis on the previously unexplored small intestine. Pinch biopsies were taken from active and inactive CD in jejunum, ileum and colon and from the same sites in healthy controls. Microarray gene expression showed that the NGAL gene, LCN2, was the second most upregulated among 1820 differentially expressed genes in terminal ileum comparing active CD and controls (FC 5.86, p = 0.027). Based on immunohistochemistry and in situ hybridization findings, this upregulation most likely represented increased expression in epithelial cells. Double immunofluorescence showed NGAL expression in 49% (range 19-70) of Paneth cells (PCs) in control ileum with no change during inflammation. In healthy jejunum, the NGAL expression in PCs was weak to none but markedly increased during active CD. We further found NGAL also in metaplastic PCs in colon. Finally, we show for the first time that NGAL is expressed in enteroendocrine cells in small intestine as well as in colon.
J Transl Med.
2018 Jun 01
Moll S, Yasui Y, Abed A, Murata T, Shimada H, Maeda A, Fukushima N, Kanamori M, Uhles S, Badi L, Cagarelli T, Formentini I, Drawnel F, Georges G, Bergauer T, Gasser R, Bonfil RD, Fridman R, Richter H, Funk J, Moeller MJ, Chatziantoniou C, Prunotto M.
PMID: 29859097 | DOI: 10.1186/s12967-018-1524-5
Abstract
BACKGROUND:
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis.
METHODS:
The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime.
RESULTS:
DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs.
CONCLUSIONS:
Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium.
Journal of gastroenterology
2021 Aug 19
Bakke, I;Walaas, GA;Bruland, T;Røyset, ES;van Beelen Granlund, A;Escudero-Hernández, C;Thorsvik, S;Münch, A;Sandvik, AK;Østvik, AE;
PMID: 34414506 | DOI: 10.1007/s00535-021-01814-y
JCI Insight.
2018 Sep 06
Sun WY, Bai B, Luo C, Yang K, Li D, Wu D, Félétou M, Villeneuve N, Zhou Y, Yang J, Xu A, Vanhoutte PM, Wang Y.
PMID: 30185654 | DOI: 10.1172/jci.insight.120196
Lipocalin-2 is not only a sensitive biomarker, but it also contributes to the pathogenesis of renal injuries. The present study demonstrates that adipose tissue-derived lipocalin-2 plays a critical role in causing both chronic and acute renal injuries. Four-week treatment with aldosterone and high salt after uninephrectomy (ANS) significantly increased both circulating and urinary lipocalin-2, and it induced glomerular and tubular injuries in kidneys of WT mice. Despite increased renal expression of lcn2 and urinary excretion of lipocalin-2, mice with selective deletion of lcn2 alleles in adipose tissue (Adipo-LKO) are protected from ANS- or aldosterone-induced renal injuries. By contrast, selective deletion of lcn2 alleles in kidney did not prevent aldosterone- or ANS-induced renal injuries. Transplantation of fat pads from WT donors increased the sensitivity of mice with complete deletion of Lcn2 alleles (LKO) to aldosterone-induced renal injuries. Aldosterone promoted the urinary excretion of a human lipocalin-2 variant, R81E, in turn causing renal injuries in LKO mice. Chronic treatment with R81E triggered significant renal injuries in LKO, resembling those observed in WT mice following ANS challenge. Taken in conjunction, the present results demonstrate that lipocalin-2 derived from adipose tissue causes acute and chronic renal injuries, largely independent of local lcn2 expression in kidney.
Eur J Immunol.
2019 May 04
Kozicky LK, Menzies SC, Hotte N, Madsen KL, Sly LM.
PMID: 31054259 | DOI: 10.1002/eji.201848014
Intravenous immunoglobulin (IVIg) is used to treat immune-mediated diseases but its mechanism of action is poorly understood. We have reported that co-treatment with IVIg and lipopolysaccharide activates macrophages to produce large amounts of anti-inflammatory IL-10 in vitro. Thus, we asked whether IVIg-treated macrophages or IVIg could reduce intestinal inflammation in mice during dextran sulfate sodium (DSS)-induced colitis by inducing macrophage IL-10 production in vivo. Adoptive transfer of IVIg-treated macrophages reduces intestinal inflammation in mice and collagen accumulation post-DSS. IVIg treatment also reduces DSS-induced intestinal inflammation and its activity is dependent on the Fc portion of the antibody. Ex vivo, IVIg induces IL-10 production and reduces IL-12/23p40 and IL-1β production in colon explant cultures. Co-staining tissues for mRNA, we demonstrate that macrophages are the source of IL-10 in IVIg-treated mice; and using IL-10-GFP reporter mice, we demonstrate that IVIg induces IL-10 production by intestinal macrophages. Finally, IVIg-mediated protection is lost in mice deficient in macrophage IL-10 production (LysMcre+/- IL-10fl/fl mice). Together, our data demonstrate a novel, in vivo mechanism of action for IVIg. IVIg-treated macrophages or IVIg could be used to treat people with intestinal inflammation and may be particularly useful for people with inflammatory bowel disease, who are refractory to therapy.
Clin Exp Immunol. 2013 Sep;173(3):502-11.
Østvik AE, Granlund AV, Torp SH, Flatberg A, Beisvåg V, Waldum HL, Flo TH, Espevik T, Damås JK, Sandvik AK (2013).
PMID: 23668802 | DOI: 10.1111/cei.12136.
International journal of molecular sciences
2023 Mar 02
Son, M;Kim, GY;Yang, Y;Ha, S;Kim, J;Kim, D;Chung, HY;Moon, HR;Chung, KW;
PMID: 36902313 | DOI: 10.3390/ijms24054882
JCI insight
2022 Mar 22
Shen, TH;Stauber, J;Xu, K;Jacunski, A;Paragas, N;Callahan, M;Banlengchit, R;Levitman, AD;Desanti De Oliveira, B;Beenken, A;Grau, MS;Mathieu, E;Zhang, Q;Li, Y;Gopal, T;Askanase, N;Arumugam, S;Mohan, S;Good, PI;Stevens, JS;Lin, F;Sia, SK;Lin, CS;D'Agati, V;Kiryluk, K;Tatonetti, NP;Barasch, J;
PMID: 35230973 | DOI: 10.1172/jci.insight.146374
Toxicology
2021 Oct 04
Yang, Y;Ha, S;Jeong, S;Jang, CW;Kim, J;Im, DS;Chung, HY;Chung, KW;
PMID: 34619300 | DOI: 10.1016/j.tox.2021.152973
Basic Res Cardiol.
2018 Jun 04
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML.
PMID: 29868933 | DOI: 10.1007/s00395-018-0686-x
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Biochimica et biophysica acta. Molecular basis of disease
2022 Jun 27
Ha, S;Yang, Y;Kim, BM;Kim, J;Son, M;Kim, D;Yu, HS;Im, D;Chung, HY;Chung, KW;
PMID: 35772632 | DOI: 10.1016/j.bbadis.2022.166474
Cell Metab.
2016 Sep 09
Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J.
PMID: 27667665 | DOI: 10.1016/j.cmet.2016.08.018
Pancreatic islet cells are critical for maintaining normal blood glucose levels, and their malfunction underlies diabetes development and progression. We used single-cell RNA sequencing to determine the transcriptomes of 1,492 human pancreatic α, β, δ, and PP cells from non-diabetic and type 2 diabetes organ donors. We identified cell-type-specific genes and pathways as well as 245 genes with disturbed expression in type 2 diabetes. Importantly, 92% of the genes have not previously been associated with islet cell function or growth. Comparison of gene profiles in mouse and human α and β cells revealed species-specific expression. All data are available for online browsing and download and will hopefully serve as a resource for the islet research community.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com