Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (127)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • (-) Remove Sst filter Sst (65)
  • (-) Remove TH filter TH (63)
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (38) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (10) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope HiPlex v2 assay (2) Apply RNAscope HiPlex v2 assay filter
  • BaseScope Duplex Assay (1) Apply BaseScope Duplex Assay filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (110) Apply Neuroscience filter
  • Cancer (3) Apply Cancer filter
  • Development (3) Apply Development filter
  • diabetes (3) Apply diabetes filter
  • Other (3) Apply Other filter
  • Nueroscience (2) Apply Nueroscience filter
  • Parkinson's Disease (2) Apply Parkinson's Disease filter
  • Stress (2) Apply Stress filter
  • Transcriptomics (2) Apply Transcriptomics filter
  • Addiction (1) Apply Addiction filter
  • Aging (1) Apply Aging filter
  • Alheimer's Disease (1) Apply Alheimer's Disease filter
  • Allergy Response (1) Apply Allergy Response filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Coping Behavior (1) Apply Coping Behavior filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Ears (1) Apply Ears filter
  • Evolution (1) Apply Evolution filter
  • Exercise (1) Apply Exercise filter
  • Hearing (1) Apply Hearing filter
  • Inflammation (1) Apply Inflammation filter
  • lncRNA (1) Apply lncRNA filter
  • Locomotion (1) Apply Locomotion filter
  • Lung (1) Apply Lung filter
  • Memory (1) Apply Memory filter
  • Metabolism (1) Apply Metabolism filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Other: Behavorial (1) Apply Other: Behavorial filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Other: Single-cell transcriptomic profiling (1) Apply Other: Single-cell transcriptomic profiling filter
  • Oxygen chemoreceptor (1) Apply Oxygen chemoreceptor filter
  • Pain (1) Apply Pain filter
  • Photoperiod (1) Apply Photoperiod filter
  • Sleep (1) Apply Sleep filter
  • Social Trauma (1) Apply Social Trauma filter
  • somatosensory function (1) Apply somatosensory function filter
  • Sympathic Nervous System (1) Apply Sympathic Nervous System filter

Category

  • Publications (127) Apply Publications filter
ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors

Mol Psychiatry

2017 Jul 20

Skirzewski M, Karavanova I, Shamir A, Erben L, Garcia-Olivares J, Shin JH, Vullhorst D, Alvarez VA, Amara SG, Buonanno A.
PMID: 28727685 | DOI: 10.1038/mp.2017.132

Genetic variants of Neuregulin 1 (NRG1) and its neuronal tyrosine kinase receptor ErbB4 are associated with risk for schizophrenia, a neurodevelopmental disorder characterized by excitatory/inhibitory imbalance and dopamine (DA) dysfunction. To date, most ErbB4 studies have focused on GABAergic interneurons in the hippocampus and neocortex, particularly fast-spiking parvalbumin-positive (PV+) basket cells. However, NRG has also been shown to modulate DA levels, suggesting a role for ErbB4 signaling in dopaminergic neuron function. Here we report that ErbB4 in midbrain DAergic axonal projections regulates extracellular DA levels and relevant behaviors. Mice lacking ErbB4 in tyrosine hydroxylase-positive (TH+) neurons, but not in PV+ GABAergic interneurons, exhibit different regional imbalances of basal DA levels and fail to increase DA in response to local NRG1 infusion into the dorsal hippocampus, medial prefrontal cortex and dorsal striatum measured by reverse microdialysis. Using Lund Human Mesencephalic (LUHMES) cells, we show that NRG/ErbB signaling increases extracellular DA levels, at least in part, by reducing DA transporter (DAT)-dependent uptake. Interestingly, TH-Cre;ErbB4f/f mice manifest deficits in learning, spatial and working memory-related behaviors, but not in numerous other behaviors altered in PV-Cre;ErbB4f/fmice. Importantly, microinjection of a Cre-inducible ErbB4 virus (AAV-ErbB4.DIO) into the mesencephalon of TH-Cre;ErbB4f/f mice, which selectively restores ErbB4 expression in DAergic neurons, rescues DA dysfunction and ameliorates behavioral deficits. Our results indicate that direct NRG/ErbB4 signaling in DAergic axonal projections modulates DA homeostasis, and that NRG/ErbB4 signaling in both GABAergic interneurons and DA neurons contribute to the modulation of behaviors relevant to psychiatric disorders.

Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference.

Sci Rep.

2017 Dec 12

Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, Sanabria B, Schanz N, Escosteguy-Neto JC, Ishiguro H, Lin Z, Sgro S, Leonard CM, Santos-Junior JG, Gardner EL, Egan JM, Lee JW, Xi ZX, Onaivi ES.
PMID: 29234141 | DOI: 10.1038/s41598-017-17796-y

Cannabinoid CB2 receptors (CB2Rs) are expressed in mouse brain dopamine (DA) neurons and are involved in several DA-related disorders. However, the cell type-specific mechanisms are unclear since the CB2R gene knockout mice are constitutive gene knockout. Therefore, we generated Cnr2-floxed mice that were crossed with DAT-Cre mice, in which Cre- recombinase expression is under dopamine transporter gene (DAT) promoter control to ablate Cnr2 gene in midbrain DA neurons of DAT-Cnr2 conditional knockout (cKO) mice. Using a novel sensitive RNAscope in situ hybridization, we detected CB2R mRNA expression in VTA DA neurons in wildtype and DAT-Cnr2 cKO heterozygous but not in the homozygous DAT-Cnr2 cKO mice. Here we report that the deletion of CB2Rs in dopamine neurons enhances motor activities, modulates anxiety and depression-like behaviors and reduces the rewarding properties of alcohol. Our data reveals that CB2Rs are involved in the tetrad assay induced by cannabinoids which had been associated with CB1R agonism. GWAS studies indicates that the CNR2 gene is associated with Parkinson's disease and substance use disorders. These results suggest that CB2Rs in dopaminergic neurons may play important roles in the modulation of psychomotor behaviors, anxiety, depression, and pain sensation and in the rewarding effects of alcohol and cocaine.

Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter

Pharmacol Res.

2018 Jun 09

Brindley RL, Bauer MB, Walker LA, Quinlan MA, Carneiro AMD, Sze JY, Blakely RD, Currie KPM.
PMID: 29894763 | DOI: 10.1016/j.phrs.2018.06.008

Adrenal chromaffin cells comprise the neuroendocrine arm of the sympathetic nervous system and secrete catecholamines to coordinate the appropriate stress response. Deletion of the serotonin (5-HT) transporter (SERT) gene in mice (SERT-/- mice) or pharmacological block of SERT function in rodents and humans augments this sympathoadrenal stress response (epinephrine secretion). The prevailing assumption is that loss of CNS SERT alters central drive to the peripheral sympathetic nervous system. Adrenal chromaffin cells also prominently express SERT where it might coordinate accumulation of 5-HT for reuse in the autocrine control of stress-evoked catecholamine secretion. To help test this hypothesis, we have generated a novel mouse model with selective excision of SERT in the peripheral sympathetic nervous system (SERTΔTH), generated by crossing floxed SERT mice with tyrosine hydroxylase Cre driver mice. SERT expression, assessed by western blot, was abolished in the adrenal gland but not perturbed in the CNS of SERTΔTH mice. SERT-mediated [3H] 5-HT uptake was unaltered in midbrain, hindbrain, and spinal cord synaptosomes, confirming transporter function was intact in the CNS. Endogenous midbrain and whole blood 5-HT homeostasis was unperturbed in SERTΔTH mice, contrasting with the depleted 5-HT content in SERT-/- mice. Selective SERT excision reduced adrenal gland 5-HT content by ≈ 50% in SERTΔTH mice but had no effect on adrenal catecholamine content. This novel model confirms that SERT expressed in adrenal chromaffin cells is essential for maintaining wild-type levels of 5-HT and provides a powerful tool to help dissect the role of SERT in the sympathetic stress response.

Imaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson\'s disease

NPJ Parkinson's disease

2021 May 12

Chen, C;McDonald, D;Blain, A;Sachdeva, A;Bone, L;Smith, ALM;Warren, C;Pickett, SJ;Hudson, G;Filby, A;Vincent, AE;Turnbull, DM;Reeve, AK;
PMID: 33980828 | DOI: 10.1038/s41531-021-00182-x

Here we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson's disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson's disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson's disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson's neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson's disease.
Cell Type-Specific Gene Expression of Alpha 5 Subunit-Containing Gamma-Aminobutyric Acid Subtype A Receptors in Human and Mouse Frontal Cortex.

Molecular Neuropsychiatry

2019 Jan 23

Hu X,. Rocco BR, Fee C, Sibille E.
PMID: - | DOI: 10.1159/000495840

Converging evidence suggests that deficits in somatostatin (SST)-expressing neuron signaling contributes to major depressive disorder. Preclinical studies show that enhancing this signaling, specifically at α5 subunit-containing γ-ami­nobutyric acid subtype A receptors (α5-GABAARs), provides a potential means to overcome low SST neuron function. The cortical microcircuit comprises multiple subtypes of inhibitory γ-aminobutyric acid (GABA) neurons and excitatory pyramidal cells (PYCs). In this study, multilabel fluorescence in situ hybridization was used to characterize α5-GABAAR gene expression in PYCs and three GABAergic neuron subgroups – vasoactive intestinal peptide (VIP)-, SST-, and parvalbumin (PV)-expressing cells – in the human and mouse frontal cortex. Across species, we found the majority of gene expression in PYCs (human: 39.7%; mouse: 54.14%), less abundant expression in PV neurons (human: 20%; mouse: 16.33%), and no expression in VIP neurons (0%). Only human SST cells expressed GABRA5, albeit at low levels (human: 8.3%; mouse: 0%). Together, this localization suggests potential roles for α5-GABAARs within the cortical microcircuit: (1) regulators of PYCs, (2) regulators of PV cell activity across species, and (3) sparse regulators of SST cell inhibition in humans. These results will advance our ability to predict the effects of pharmacological agents targeting α5-GABAARs, which have shown therapeutic potential in preclinical animal models.

TRPM4 Contributes to Subthreshold Membrane Potential Oscillations in Multiple Mouse Pacemaker Neurons

eNeuro

2021 Nov 17

Li, K;Shi, Y;Gonye, EC;Bayliss, DA;
PMID: 34732535 | DOI: 10.1523/ENEURO.0212-21.2021

Select neuronal populations display steady rhythmic neuronal firing that provides tonic excitation to drive downstream networks and behaviors. In noradrenergic neurons of the locus coeruleus (LC), circadian neurons of the suprachiasmatic nucleus (SCN), and CO2/H+-activated neurons of the brainstem retrotrapezoid nucleus (RTN), large subthreshold membrane potential oscillations contribute to the pacemaker-like action potential discharge. The oscillations and firing in LC and SCN involve contributions from leak sodium (NALCN) and L-type calcium channels while recent work from RTN suggested an additional pivotal role for a secondary calcium-activated and voltage-gated cationic current sensitive to TRPM4 channel blockers. Here, we tested whether TRPM4 contributes to subthreshold oscillations in mouse LC and SCN. By RNAscope in situ hybridization, Trpm4 transcripts were detected in both cell groups. In whole-cell recordings from acute slice preparations, prominent voltage-dependent membrane potential oscillations were revealed in LC and SCN after blocking action potentials. These oscillations were inhibited by two chemically-distinct blockers of TRPM4, 9-phenanthrol (9-pt) and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). Under whole-cell voltage clamp, inward currents evoked by oscillation voltage waveforms were inhibited in LC by blocking L-type calcium channels and TRPM4. These data implicate TRPM4 in the large subthreshold membrane potential oscillations that underlie tonic action potential discharge in LC and SCN, providing a voltage-dependent and calcium-dependent cationic current to augment the depolarizing inward Na+ and Ca2+ currents previously associated with this distinctive electroresponsive property.
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling

Cell discovery

2023 Feb 14

Yu, B;Zhang, Q;Lin, L;Zhou, X;Ma, W;Wen, S;Li, C;Wang, W;Wu, Q;Wang, X;Li, XM;
PMID: 36788214 | DOI: 10.1038/s41421-022-00506-y

The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Arcuate Angiotensin II increases arterial pressure via coordinated increases in sympathetic nerve activity and vasopressin secretion

eNeuro

2021 Dec 17

Shi, Z;Stornetta, DS;Stornetta, RL;Brooks, VL;
PMID: 34937769 | DOI: 10.1523/ENEURO.0404-21.2021

The arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII); however, the cellular mechanisms and downstream neurocircuitry are unclear. Here we show that ArcN AngII increases AP in female rats via two phases, both of which are mediated via activation of AngII type 1 receptors (AT1aR): initial vasopressin-induced vasoconstriction, followed by slowly developing increases in sympathetic nerve activity (SNA) and heart rate (HR). In male rats, ArcN AngII evoked a similarly slow increase in SNA, but the initial pressor response was variable. In females, the effects of ArcN AngII varied during the estrus cycle, with significant increases in SNA, HR, and AP occurring during diestrus and estrus, but only increased AP during proestrus. Pregnancy markedly increased the expression of AT1aR in the ArcN with parallel substantial AngII-induced increases in SNA and MAP. In both sexes, the sympathoexcitation relied on suppression of tonic ArcN sympathoinhibitory Neuropeptide Y inputs, and activation of pro-opiomelanocortin (POMC) projections, to the paraventricular nucleus (PVN). Few or no NPY or POMC neurons expressed the AT1aR, suggesting that AngII increases AP and SNA at least in part indirectly via local interneurons, which express tyrosine hydroxylase (TH) and VGat (i.e. GABAergic). ArcN TH neurons release GABA locally, and central AT1aR and TH neurons mediate stress responses; therefore, we propose that TH AT1aR neurons are well situated to locally coordinate the regulation of multiple modalities within the ArcN in response to stress.SIGNIFICANCEThe arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII). Here we show that ArcN AngII activates AT1aR to increase AP in male and female rats by slowly increasing sympathetic nerve activity. In females, ArcN AngII also evoked an initial pressor response mediated by vasopressin-induced vasoconstriction. Pregnant and estrus females responded more than males, in association with higher ArcN AT1aR expression. AT1aR were identified in ArcN interneurons that express tyrosine hydroxylase (TH) and GABA. Since brain AT1aR and TH mediate stress responses, ArcN AT1aR TH neurons are well situated to locally coordinate autonomic, hormonal, and behavioral responses to stress.
Somatostatin Neurons in the Mouse Pontine Nucleus Activate GABAA Receptor Mediated Synaptic Currents in Locus Coeruleus Neurons

Frontiers in synaptic neuroscience

2021 Oct 04

Garcia DuBar, S;Cosio, D;Korthas, H;Van Batavia, JP;Zderic, SA;Sahibzada, N;Valentino, RJ;Vicini, S;
PMID: 34675794 | DOI: 10.3389/fnsyn.2021.754786

The pontine nuclei comprising the locus coeruleus (LC) and Barrington's nucleus (BRN) amongst others form the neural circuitry(s) that coordinates arousal and voiding behaviors. However, little is known about the synaptic connectivity of neurons within or across these nuclei. These include corticotropin-releasing factor (CRF+) expressing neurons in the BRN that control bladder contraction and somatostatin expressing (SST+) neurons whose role in this region has not been discerned. To determine the synaptic connectivity of these neurons, we employed optogenetic stimulation with recordings from BRN and LC neurons in brain stem slices of channelrhodopsin-2 expressing SST or CRF neurons. Optogenetic stimulation of CRF+ BRN neurons of Crf Cre ;chr2-yfp mice had little effect on either CRF+ BRN neurons, CRF- BRN neurons, or LC neurons. In contrast, in Sst Cre ;chr2-yfp mice light-activated inhibitory postsynaptic currents (IPSCs) were reliably observed in a majority of LC but not BRN neurons. The GABAA receptor antagonist, bicuculline, completely abolished the light-induced IPSCs. To ascertain if these neurons were part of the neural circuitry that controls the bladder, the trans-synaptic tracer, pseudorabies virus (PRV) was injected into the bladder wall of Crf Cre ;tdTomato or Sst Cre ;tdTomato mice. At 68-72 h post-viral infection, PRV labeled neurons were present only in the BRN, being preponderant in CRF+ neurons with few SST+ BRN neurons labeled from the bladder. At 76 and 96 h post-virus injection, increased labeling was observed in both BRN and LC neurons. Our results suggest SST+ neurons rather than CRF+ neurons in BRN can regulate the activity of LC neurons.
Vesicular glutamate transporter modulates sex differences in dopamine neuron vulnerability to age-related neurodegeneration

Aging cell

2021 May 01

Buck, SA;Steinkellner, T;Aslanoglou, D;Villeneuve, M;Bhatte, SH;Childers, VC;Rubin, SA;De Miranda, BR;O'Leary, EI;Neureiter, EG;Fogle, KJ;Palladino, MJ;Logan, RW;Glausier, JR;Fish, KN;Lewis, DA;Greenamyre, JT;McCabe, BD;Cheetham, CEJ;Hnasko, TS;Freyberg, Z;
PMID: 33909313 | DOI: 10.1111/acel.13365

Age is the greatest risk factor for Parkinson's disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex- and age-related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age-related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age- and sex-related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age-related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age- and PD-related neurodegeneration.
Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement

eNeuro

2021 Sep 29

Gould, NL;Kolatt Chandran, S;Kayyal, H;Edry, E;Rosenblum, K;
PMID: 34518366 | DOI: 10.1523/ENEURO.0152-21.2021

Forming long-term memories is crucial for adaptive behavior and survival in changing environments. The molecular consolidation processes which underlie the formation of these long-term memories are dependent on protein synthesis in excitatory and SST-expressing neurons. A centrally important, parallel process to this involves the removal of the memory constraint quinone reductase 2 (QR2), which has been recently shown to enhance memory consolidation for novel experiences in the cortex and hippocampus, via redox modulation. However, it is unknown within which cell type in the cortex removal of QR2 occurs, nor how this affects neuronal function. Here, we use novel taste learning in the mouse anterior insular cortex (aIC) to show that similarly to mRNA translation, QR2 removal occurs in excitatory and SST-expressing neurons. Interestingly, both novel taste and QR2 inhibition reduce excitability specifically within SST, but not excitatory neurons. Furthermore, reducing QR2 expression in SST, but not in PV or excitatory neurons, is sufficient to enhance taste memory. Thus, QR2 mediated intrinsic property changes of SST interneurons in the aIC is a central removable factor to allow novel taste memory formation. This previously unknown involvement of QR2 and SST interneurons in resetting aIC activity hours following learning, describes a molecular mechanism to define cell circuits for novel information. Therefore, the QR2 pathway in SST interneurons provides a fresh new avenue by which to tackle age-related cognitive deficits, while shedding new light onto the functional machinations of long-term memory formation for novel information.
Incerto-thalamic modulation of fear via GABA and dopamine

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

2021 Apr 16

Venkataraman, A;Hunter, SC;Dhinojwala, M;Ghebrezadik, D;Guo, J;Inoue, K;Young, LJ;Dias, BG;
PMID: 33864008 | DOI: 10.1038/s41386-021-01006-5

Fear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?