ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2023 Jan 12
Velazquez-Sanchez, C;Muresan, L;Marti-Prats, L;Belin, D;
PMID: 36635597 | DOI: 10.1038/s41386-022-01522-y
J Neurosci.
2019 Feb 21
van Loo KMJ, Rummel CK, Pitsch J, Alexander Müller J, Bikbaev AF, Martinez Chavez E, Blaess S, Dietrich D, Heine M, Becker AJ, Schoch S.
PMID: 30792272 | DOI: 10.1523/JNEUROSCI.1731-18.2019
Transient brain insults including status epilepticus (SE) can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown Early growth response 1 (Egr1) to transiently increase expression of the T-type Voltage-dependent Ca2+-channel (VDCC) subunit CaV3.2, a key pro-epileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations and so far our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the voltage-dependent Ca2+-channel subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevates seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+-channelopathy".SIGNIFICANCE STATEMENTThe onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified including Early growth response 1 (Egr1), which activates transcription of the T-type Ca2+-channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+-channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+-channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.
Nat Commun.
2016 Jan 25
Alexander GM, Farris S, Pirone JR, Zheng C, Colgin LL, Dudek SM.
PMID: 26806606 | DOI: 10.1038/ncomms10300.
The hippocampus supports a cognitive map of space and is critical for encoding declarative memory (who, what, when and where). Recent studies have implicated hippocampal subfield CA2 in social and contextual memory but how it does so remains unknown. Here we find that in adult male rats, presentation of a social stimulus (novel or familiar rat) or a novel object induces global remapping of place fields in CA2 with no effect on neuronal firing rate or immediate early gene expression. This remapping did not occur in CA1, suggesting this effect is specific for CA2. Thus, modification of existing spatial representations might be a potential mechanism by which CA2 encodes social and novel contextual information.
Cell reports
2022 Feb 01
Mapps, AA;Thomsen, MB;Boehm, E;Zhao, H;Hattar, S;Kuruvilla, R;
PMID: 35108545 | DOI: 10.1016/j.celrep.2022.110328
eNeuro
2022 Apr 06
Tallafuss, A;Stednitz, SJ;Voeun, M;Levichev, A;Larsch, J;Eisen, J;Washbourne, P;
PMID: 35346959 | DOI: 10.1523/ENEURO.0035-22.2022
Cell Rep
2020 Apr 28
Erwin SR, Sun W, Copeland M, Lindo S, Spruston N, Cembrowski MS
PMID: 32348756 | DOI: 10.1016/j.celrep.2020.107551
bioRxiv : the preprint server for biology
2023 Jan 23
Thatikonda, V;Lu, H;Jurado, S;Kostyrko, K;Bristow, CA;Bosch, K;Feng, N;Gao, S;Gerlach, D;Gmachl, M;Lieb, S;Jeschko, A;Machado, AA;Marszalek, ED;Mahendra, M;Jaeger, PA;Sorokin, A;Strauss, S;Trapani, F;Kopetz, S;Vellano, CP;Petronczki, M;Kraut, N;Heffernan, TP;Marszalek, JR;Pearson, M;Waizenegger, I;Hofmann, MH;
PMID: 36747713 | DOI: 10.1101/2023.01.23.525210
Neuron (2018)
2018 Dec 31
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA.
| DOI: 10.1016/j.neuron.2018.12.006
Developmental cell
2022 Jun 07
Hein, RFC;Wu, JH;Holloway, EM;Frum, T;Conchola, AS;Tsai, YH;Wu, A;Fine, AS;Miller, AJ;Szenker-Ravi, E;Yan, KS;Kuo, CJ;Glass, I;Reversade, B;Spence, JR;
PMID: 35679862 | DOI: 10.1016/j.devcel.2022.05.010
PLoS biology
2021 Nov 01
Udagawa, T;Atkinson, PJ;Milon, B;Abitbol, JM;Song, Y;Sperber, M;Huarcaya Najarro, E;Scheibinger, M;Elkon, R;Hertzano, R;Cheng, AG;
PMID: 34758021 | DOI: 10.1371/journal.pbio.3001445
Nature metabolism
2023 Jun 01
Palani, NP;Horvath, C;Timshel, PN;Folkertsma, P;Grønning, AGB;Henriksen, TI;Peijs, L;Jensen, VH;Sun, W;Jespersen, NZ;Wolfrum, C;Pers, TH;Nielsen, S;Scheele, C;
PMID: 37337126 | DOI: 10.1038/s42255-023-00820-z
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com