Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (85)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • (-) Remove ZIKV filter ZIKV (46)
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • (-) Remove CXCL10 filter CXCL10 (31)
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (22) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (9) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (8) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (6) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.0 Assay (5) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope (4) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Infectious Disease (47) Apply Infectious Disease filter
  • Cancer (15) Apply Cancer filter
  • Neuroscience (15) Apply Neuroscience filter
  • Inflammation (7) Apply Inflammation filter
  • Infectious (5) Apply Infectious filter
  • Development (2) Apply Development filter
  • Liver (2) Apply Liver filter
  • Chronic Kidney Disease (1) Apply Chronic Kidney Disease filter
  • Covid (1) Apply Covid filter
  • Immuno (1) Apply Immuno filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease: Ebola Virus (1) Apply Infectious Disease: Ebola Virus filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • Inflammtion (1) Apply Inflammtion filter
  • Kidney (1) Apply Kidney filter
  • Kidney Fibrosis (1) Apply Kidney Fibrosis filter
  • Metabolism (1) Apply Metabolism filter
  • Nephrology (1) Apply Nephrology filter
  • Other (1) Apply Other filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: lymphadenopathy (1) Apply Other: lymphadenopathy filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Pulmonary Hypertension (1) Apply Pulmonary Hypertension filter
  • Pulmonology (1) Apply Pulmonology filter
  • Stem Cells (1) Apply Stem Cells filter
  • T Cells (1) Apply T Cells filter
  • T-cell therapy (1) Apply T-cell therapy filter
  • Zika (1) Apply Zika filter
  • Zika Virus (1) Apply Zika Virus filter

Category

  • Publications (85) Apply Publications filter
Zika virus shedding in the stool and infection through the anorectal mucosa in mice.

Emerg Microbes Infect. 2018 Oct 17;7(1):169.

2018 Oct 17

Li C, Deng YQ, Zu S, Quanquin N, Shang J, Tian M, Ji X, Zhang NN, Dong HL, Xu YP, Zhao LZ, Zhang FC, Li XF, Wu A, Cheng G, Qin CF.
PMID: 30333476 | DOI: 10.1038/s41426-018-0170-6

Zika virus (ZIKV) has elicited global concern due to its unique biological features, unusual transmission routes, and unexpected clinical outcomes. Although ZIKV transmission through anal intercourse has been reported in humans, it remains unclear if ZIKV is detectable in the stool, if it can infect the host through the anal canal mucosa, and what the pathogenesis of such a route of infection might be in the mouse model. Herein, we demonstrate that ZIKV RNA can be recovered from stools in multiple mouse models, as well as from the stool of a ZIKV patient. Remarkably, intra-anal (i.a.) inoculation with ZIKV leads to efficient infection in both Ifnar1-/- and immunocompetent mice, characterized by extensive viral replication in the blood and multiple organs, including the brain, small intestine, testes, and rectum, as well as robust humoral and innate immune responses. Moreover, i.a. inoculation of ZIKV in pregnant mice resulted in transplacental infection and delayed fetal development. Overall, our results identify the anorectal mucosa as a potential site of ZIKV infection in mice, reveal the associated pathogenesis of i.a. infection, and highlight the complexity of ZIKV transmission through anal intercourse.
Cell-Population Dynamics in Diffuse Gliomas during Gliomagenesis and Its Impact on Patient Survival

Cancers

2022 Dec 26

Nikitin, P;Musina, G;Pekov, S;Kuzin, A;Popov, I;Belyaev, A;Kobyakov, G;Usachev, D;Nikolaev, V;Mikhailov, V;
| DOI: 10.3390/cancers15010145

Diffuse gliomas continue to be an important problem in neuro-oncology. To solve it, studies have considered the issues of molecular pathogenesis from the intratumoral heterogeneity point. Here, we carried out a comparative dynamic analysis of the different cell populations’ content in diffuse gliomas of different molecular profiles and grades, considering the cell populations’ functional properties and the relationship with patient survival, using flow cytometry, immunofluorescence, multiparametric fluorescent in situ hybridization, polymerase chain reaction, and cultural methods. It was shown that an increase in the IDH-mutant astrocytomas and oligodendrogliomas malignancy is accompanied by an increase in stem cells’ proportion and mesenchymal cell populations’ appearance arising from oligodendrocyte-progenitor-like cells with cell plasticity and cells’ hypoxia response programs’ activation. In glioblastomas, malignancy increase is accompanied by an increase in both stem and definitive cells with mesenchymal differentiation, while proneuronal glioma stem cells are the most likely the source of mesenchymal glioma stem cells, which, in hypoxic conditions, further give rise to mesenchymal-like cells. Clinical confirmation was a mesenchymal-like cell and mesenchymal glioma stem cell number, and the hypoxic and plastic molecular programs’ activation degree had a significant effect on relapse-free and overall survival. In general, we built a multi-vector model of diffuse gliomas’ pathogenetic tracing up to the practical plane.
Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

Nat Immunol.

2017 Sep 25

Fernandez E, Dejnirattisai W, Cao B, Scheaffer SM, Supasa P, Wongwiwat W, Esakky P, Drury A, Mongkolsapaya J, Moley KH, Mysorekar IU, Screaton GR, Diamond MS.
PMID: 28945244 | DOI: 10.1038/ni.3849

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

Dengue Virus Immunity Increases Zika Virus-Induced Damage during Pregnancy.

Immunity

2019 Jan 30

Brown JA, Singh G, Acklin JA, Lee S, Duehr JE, Chokola AN, Frere JJ, Hoffman KW, Foster GA, Krysztof D, Cadagan R, Jacobs AR, Stramer SL, Krammer F, García-Sastre A, Lim JK.
PMID: 30737148 | DOI: 10.1016/j.immuni.2019.01.005

Zika virus (ZIKV) has recently been associated with birth defects and pregnancy loss after maternal infection. Because dengue virus (DENV) and ZIKV co-circulate, understanding the role of antibody-dependent enhancement in the context of pregnancy is critical. Here, we showed that the presence of DENV-specific antibodies in ZIKV-infected pregnant mice significantly increased placental damage, fetal growth restriction, and fetal resorption. This was associated with enhanced viral replication in the placenta that coincided with an increased frequency of infected trophoblasts. ZIKV-infected human placental tissues also showed increased replication in the presence of DENV antibodies, which was reversed by FcγR blocking antibodies. Furthermore, ZIKV-mediated fetal pathogenesis was enhanced in mice in the presence of a DENV-reactive monoclonal antibody, but not in the presence of the LALA variant, indicating a dependence on FcγR engagement. Our data suggest a possible mechanism for the recent increase in severe pregnancy outcomes after ZIKV infection in DENV-endemic areas.

[18F]DPA-714 PET Imaging Reveals Global Neuroinflammation in Zika Virus-Infected Mice.

Mol Imaging Biol.

2017 Sep 12

Kuszpit K, Hollidge BS, Zeng X, Stafford RG, Daye S, Zhang X, Basuli F, Golden JW, Swenson RE, Smith DR, Bocan TM.
PMID: 28900831 | DOI: 10.1007/s11307-017-1118-2

Abstract

PURPOSE:

The association of Zika virus (ZIKV) infection and development of neurological sequelae require a better understanding of the pathogenic mechanisms causing severe disease. The purpose of this study was to evaluate the ability and sensitivity of positron emission tomography (PET) imaging using [18F]DPA-714, a translocator protein (TSPO) 18 kDa radioligand, to detect and quantify neuroinflammation in ZIKV-infected mice.

PROCEDURES:

We assessed ZIKV-induced pathogenesis in wild-type C57BL/6 mice administered an antibody to inhibit type I interferon (IFN) signaling. [18F]DPA-714 PET imaging was performed on days 3, 6, and 10 post-infection (PI), and tissues were subsequently processed for histological evaluation, quantification of microgliosis, and detection of viral RNA by in situ hybridization (ISH).

RESULTS:

In susceptible ZIKV-infected mice, viral titers in the brain increased from days 3 to 10 PI. Over this span, these mice showed a two- to sixfold increase in global brain neuroinflammation using [18F]DPA-714 PET imaging despite limited, regional detection of viral RNA. No measurable increase in ionized calcium binding adaptor molecule 1 (Iba-1) expression was noted at day 3 PI; however, there was a modest increase at day 6 PI and an approximately significant fourfold increase in Iba-1 expression at day 10 PI in the susceptible ZIKV-infected group relative to controls.

CONCLUSIONS:

The results of the current study demonstrate that global neuroinflammation plays a significant role in the progression of ZIKV infection and that [18F]DPA-714 PET imaging is a sensitive tool relative to histology for the detection of neuroinflammation. [18F]DPA-714 PET imaging may be useful in dynamically characterizing the pathology associated with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases.

Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn Syndrome

J Allergy Clin Immunol.

2020 Apr 17

Rigoni R, Fontana E, Dobbs K, Marrella V, Taverniti V, Maina V, Facoetti A, D'Amico G, Al-Herz W, Cruz-Munoz ME, Schuetz C, Gennery AR, Garabedian EK, Giliani S, Draper D, Dbaibo G, Geha RS, Meyts I1, Tousseyn T, Neven B, Moshous D, Fischer A, Schulz A, Finocchi A, Kuhns DB, Fink DL, Lionakis MS, Swamydas M, Guglielmetti S, Alejo J, Myles IA, Pittaluga S, Notarangelo LD, Villa A, Cassani B
PMID: 32311393 | DOI: 10.1016/j.jaci.2020.04.005

BACKGROUND: Severe early-onset erythroderma and gut inflammation, with massive tissue infiltration of oligoclonal activated T cells are the hallmark of Omenn Syndrome (OS). OBJECTIVE: The impact of altered gut homeostasis in the cutaneous manifestations of OS remains to be clarified. METHODS: We analyzed a cohort of 15 patients with OS and the Rag2R229Q mouse model. Homing phenotype of circulating lymphocytes were analyzed by flow cytometry. Inflammatory cytokines and chemokines were examined in the sera by ELISA and in skin biopsies by immunohistochemistry and in situ RNA hybridization. Experimental colitis was induced in mice by dextran sulfate sodium salt (DSS). RESULTS: We show that memory/activated T cells from OS patients and from the Rag2R229Q mouse model of OS abundantly express the skin homing receptors Cutaneous Lymphocyte Associated Antigen (CLA) and CCR4, associated with high levels of CCL17 and CCL22 chemokines. Serum levels of LPS are also elevated. A broad Th1/Th2/Th17 inflammatory signature is detected in the periphery and in the skin. Increased Tlr4 expression in the skin of Rag2R229Q mice is associated with enhanced cutaneous inflammation upon local and systemic administration of LPS. Likewise, boosting colitis in Rag2R229Q mice results in increased frequency of CCR4+ splenic T cells and worsening of skin inflammation, as indicated by epidermal thickening, enhanced epithelial cell activation and dermal infiltration by Th1 effector T cells. CONCLUSIONS: These results support the existence of an interplay between gut and skin that can sustain skin inflammation in O
Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring

Ebiom

2017 Sep 21

Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C, Wilson D, Walker S, Starrak G, Hockley D, Huang Y, Mutwiri G, Potter A, Gilmour M, Safronetz D, Gerdts V, Karniychuk U.
PMID: - | DOI: 10.1016/j.ebiom.2017.09.021

Outcomes of Zika virus (ZIKV) infection in pregnant women vary from the birth of asymptomatic offspring to abnormal development and severe brain lesions in fetuses and infants. There are concerns that offspring affected in utero and born without apparent symptoms may develop mental illnesses. Therefore, animal models are important to test interventions against in utero infection and health sequelae in symptomatic and likely more widespread asymptomatic offspring. To partially reproduce in utero infection in humans, we directly inoculated selected porcine conceptuses with ZIKV. Inoculation resulted in rapid trans-fetal infections, persistent infection in conceptuses, molecular pathology in fetal brains, fetal antibody and type I interferon responses. Offspring infected in utero showed ZIKV in their fetal membranes collected after birth. Some in utero affected piglets were small, depressed, had undersized brains, showed seizures and potentially increased activity. Our data suggest that porcine model of persistent in utero ZIKV infection has a strong potential for translational research and can be used to test therapeutic interventions in vivo.

TAM Receptors Are Not Required for Zika Virus Infection in Mice.

Cell Rep.

2017 Apr 18

Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA, Cao B, Mysorekar IU, Rothlin CV, Fikrig E, Diamond MS, Iwasaki A.
PMID: 28423319 | DOI: 10.1016/j.celrep.2017.03.058

Tyro3, Axl, and Mertk (TAM) receptors are candidate entry receptors for infection with the Zika virus (ZIKV), an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl-/-, Mertk-/-, Axl-/-Mertk-/-, and Axl-/-Tyro3-/- mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR)-blocking (MAR1-5A3) antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection.

Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes

Immunity.

2018 Nov 21

Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B.
PMID: 30471926 | DOI: 10.1016/j.immuni.2018.11.004

Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.

CD8+ T cells modulate autosomal dominant polycystic kidney disease progression

Kidney Int.

2018 Sep 21

Kleczko EK, Marsh KH, Tyler LC, Furgeson SB, Bullock BL, Altmann CJ, Miyazaki M, Gitomer BY, Harris PC, Weiser-Evans MCM, Chonchol MB, Clambey ET, Nemenoff RA, Hopp K.
PMID: 30249452 | DOI: 10.1016/j.kint.2018.06.025

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited nephropathy. To date, therapies alleviating the disease have largely focused on targeting abnormalities in renal epithelial cell signaling. ADPKD has many hallmarks of cancer, where targeting T cells has brought novel therapeutic interventions. However, little is known about the role and therapeutic potential of T cells in ADPKD. Here, we used an orthologous ADPKD model, Pkd1 p.R3277C (RC), to begin to define the role of T cells in disease progression. Using flow cytometry, we found progressive increases in renal CD8+ and CD4+ T cells, correlative with disease severity, but with selective activation of CD8+ T cells. By immunofluorescence, T cells specifically localized to cystic lesions and increased levels of T-cell recruiting chemokines (CXCL9/CXCL10) were detected by qPCR/in situ hybridization in the kidneys of mice, patients, and ADPKD epithelial cell lines. Importantly, immunodepletion of CD8+ T cells from one to three months in C57Bl/6 Pkd1RC/RC mice resulted in worsening of ADPKD pathology, decreased apoptosis, and increased proliferation compared to IgG-control, consistent with a reno-protective role of CD8+ T cells. Thus, our studies suggest a functional role for T cells, specifically CD8+ T cells, in ADPKD progression. Hence, targeting this pathway using immune-oncology agents may represent a novel therapeutic approach for ADPKD.

Checkpoint Blockade-Induced Dermatitis and Colitis Are Dominated by Tissue-Resident Memory T Cells and Th1/Tc1 Cytokines

Cancer immunology research

2022 Oct 04

Reschke, R;Shapiro, JW;Yu, J;Rouhani, SJ;Olson, DJ;Zha, Y;Gajewski, TF;
PMID: 35977003 | DOI: 10.1158/2326-6066.CIR-22-0362

Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.
Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques

Sci Transl Med.

2018 Apr 04

Mavigner M, Raper J, Kovacs-Balint Z, Gumber S, O’Neal JT, Bhaumik SK, Zhang X, Habib J, Mattingly C, McDonald CE, Avanzato V, Burke MW, Magnani DM, Bailey VK, Watkins DI, Vanderford TH, Fair D, Earl E, Feczko E, Styner M, Jean SM, Cohen JK, Silvestri G,
PMID: 29618564 | DOI: 10.1126/scitranslmed.aao6975

The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?