Mochida, Y;Ochiai, K;Nagase, T;Nonomura, K;Akimoto, Y;Fukuhara, H;Sakai, T;Matsumura, G;Yamaguchi, Y;Nagase, M;
PMID: 35273307 | DOI: 10.1038/s41598-022-07987-7
The kidney plays a central role in body fluid homeostasis. Cells in the glomeruli and juxtaglomerular apparatus sense mechanical forces and modulate glomerular filtration and renin release. However, details of mechanosensory systems in these cells are unclear. Piezo2 is a recently identified mechanically activated ion channel found in various tissues, especially sensory neurons. Herein, we examined Piezo2 expression and regulation in mouse kidneys. RNAscope in situ hybridization revealed that Piezo2 expression was highly localized in mesangial cells and juxtaglomerular renin-producing cells. Immunofluorescence assays detected GFP signals in mesangial cells and juxtaglomerular renin-producing cells of Piezo2GFP reporter mice. Piezo2 transcripts were observed in the Foxd1-positive stromal progenitor cells of the metanephric mesenchyme in the developing mouse kidney, which are precursors of mesangial cells and renin-producing cells. In a mouse model of dehydration, Piezo2 expression was downregulated in mesangial cells and upregulated in juxtaglomerular renin-producing cells, along with the overproduction of renin and enlargement of the area of renin-producing cells. Furthermore, the expression of the renin coding gene Ren1 was reduced by Piezo2 knockdown in cultured juxtaglomerular As4.1 cells under static and stretched conditions. These data suggest pivotal roles for Piezo2 in the regulation of glomerular filtration and body fluid balance.
Hypertension research : official journal of the Japanese Society of Hypertension
Ochiai, K;Mochida, Y;Nagase, T;Fukuhara, H;Yamaguchi, Y;Nagase, M;
PMID: 36810623 | DOI: 10.1038/s41440-023-01219-9
The recent discovery of mechanosensitive ion channels has promoted mechanobiological research in the field of hypertension and nephrology. We previously reported Piezo2 expression in mouse mesangial and juxtaglomerular renin-producing cells, and its modulation by dehydration. This study aimed to investigate how Piezo2 expression is altered in hypertensive nephropathy. The effects of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, were also analyzed. Four-week-old Dahl salt-sensitive rats were randomly assigned to three groups: rats fed a 0.3% NaCl diet (DSN), rats fed a high 8% NaCl diet (DSH), and rats fed a high salt diet supplemented with esaxerenone (DSH + E). After six weeks, DSH rats developed hypertension, albuminuria, glomerular and vascular injuries, and perivascular fibrosis. Esaxerenone effectively decreased blood pressure and ameliorated renal damage. In DSN rats, Piezo2 was expressed in Pdgfrb-positive mesangial and Ren1-positive cells. Piezo2 expression in these cells was enhanced in DSH rats. Moreover, Piezo2-positive cells accumulated in the adventitial layer of intrarenal small arteries and arterioles in DSH rats. These cells were positive for Pdgfrb, Col1a1, and Col3a1, but negative for Acta2 (αSMA), indicating that they were perivascular mesenchymal cells different from myofibroblasts. Piezo2 upregulation was reversed by esaxerenone treatment. Furthermore, Piezo2 inhibition by siRNA in the cultured mesangial cells resulted in upregulation of Tgfb1 expression. Cyclic stretch also upregulated Tgfb1 in both transfections of control siRNA and Piezo2 siRNA. Our findings suggest that Piezo2 may have a contributory role in modulating the pathogenesis of hypertensive nephrosclerosis and have also highlighted the therapeutic effects of esaxerenone on salt-induced hypertensive nephropathy. Mechanochannel Piezo2 is known to be expressed in the mouse mesangial cells and juxtaglomerular renin-producing cells, and this was confirmed in normotensive Dahl-S rats. In salt-induced hypertensive Dahl-S rats, Piezo2 upregulation was observed in the mesangial cells, renin cells, and notably, perivascular mesenchymal cells, suggesting its involvement in kidney fibrosis.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Sci Transl Med. 2018 Oct 10;10(462).
Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F, Kühnemund J, Francisco AG, Keenan WT, Dubin AE, Lewin GR, Patapoutian A.
PMID: 30305457 | DOI: 10.1126/scitranslmed.aat9897
The brush of a feather and a pinprick are perceived as distinct sensations because they are detected by discrete cutaneous sensory neurons. Inflammation or nerve injury can disrupt this sensory coding and result in maladaptive pain states, including mechanical allodynia, the development of pain in response to innocuous touch. However, the molecular mechanisms underlying the alteration of mechanical sensitization are poorly understood. In mice and humans, loss of mechanically activated PIEZO2 channels results in the inability to sense discriminative touch. However, the role of Piezo2 in acute and sensitized mechanical pain is not well defined. Here, we showed that optogenetic activation of Piezo2-expressing sensory neurons induced nociception in mice. Mice lacking Piezo2 in caudal sensory neurons had impaired nocifensive responses to mechanical stimuli. Consistently, ex vivo recordings in skin-nerve preparations from these mice showed diminished Aδ-nociceptor and C-fiber firing in response to mechanical stimulation. Punctate and dynamic allodynia in response to capsaicin-induced inflammation and spared nerve injury was absent in Piezo2-deficient mice. These results indicate that Piezo2 mediates inflammation- and nerve injury-induced sensitized mechanical pain, and suggest that targeting PIEZO2 might be an effective strategy for treating mechanical allodynia.
Liu, L;Zhao, Y;An, W;Zhao, M;Ding, N;Liu, H;Ge, N;Wen, J;Zhang, X;Zu, S;Sun, W;
PMID: 37227654 | DOI: 10.1007/s12035-023-03386-9
Mechanical sensing Piezo2 channel in primary sensory neurons has been shown contribute to mechanical allodynia in somatic chronic pain conditions. Interstitial cystitis (IC)-associated pain is often triggered by bladder filling, a presentation that mimics the mechanical allodynia. In the present study, we aimed to examine the involvement of sensory Piezo2 channel in IC-associated mechanical allodynia using a commonly employed cyclophosphamide (CYP)-induced IC model rat. Piezo2 channels in dorsal root ganglia (DRGs) was knocked down by intrathecal injections of Piezo2 anti-sense oligodeoxynucleotides (ODNs) in CYP-induced cystitis rats, and mechanical stimulation-evoked referred bladder pain was measured in the lower abdomen overlying the bladder using von Frey filaments. Piezo2 expression at the mRNA, protein, and functional levels in DRG neurons innervating the bladder was detected by RNA-fluorescence in situ hybridization, western blotting, immunofluorescence, and Ca2+ imaging, respectively. We found that Piezo2 channels were expressed on most (> 90%) of the bladder primary afferents, including afferents that express CGRP, TRPV1 and stained with isolectin B4. CYP-induced cystitis was associated with Piezo2 upregulation in bladder afferent neurons at the mRNA, protein, and functional levels. Knockdown of Piezo2 expression in DRG neurons significantly suppressed mechanical stimulation-evoked referred bladder pain as well as bladder hyperactivity in CYP rats compared to CYP rats treated with mismatched ODNs. Our results suggest upregulation of Piezo2 channels is involved in the development of bladder mechanical allodynia and bladder hyperactivity in CYP-induced cystitis. Targeting Piezo2 might be an attractive therapeutic approach for IC-related bladder pain.
Piezo2 mechanosensitive ion channel is located to sensory neurons and nonneuronal cells in rat peripheral sensory pathway: implications in pain
Shin, SM;Moehring, F;Itson-Zoske, B;Fan, F;Stucky, CL;Hogan, QH;Yu, H;
PMID: 34285153 | DOI: 10.1097/j.pain.0000000000002356
Piezo2 mechanotransduction channel is a crucial mediator of sensory neurons for sensing and transducing touch, vibration, and proprioception. We here characterized Piezo2 expression and cell specificity in rat peripheral sensory pathway using a validated Piezo2 antibody. Immunohistochemistry using this antibody revealed Piezo2 expression in pan primary sensory neurons of dorsal root ganglia in naïve rats, which was actively transported along afferent axons to both central presynaptic terminals innervating the spinal dorsal horn (DH) and peripheral afferent terminals in the skin. Piezo2 immunoreactivity (IR) was also detected in the postsynaptic neurons of the DH and in the motor neurons of the ventral horn, but not in spinal glial fibrillary acidic protein-positive and Iba1-positive glia. Notably, Piezo2-IR was clearly identified in peripheral nonneuronal cells, including perineuronal glia, Schwann cells in the sciatic nerve and surrounding cutaneous afferent endings, as well as in skin epidermal Merkel cells and melanocytes. Immunoblots showed increased Piezo2 in dorsal root ganglia ipsilateral to plantar injection of complete Freund's adjuvant, and immunostaining revealed increased Piezo2-IR intensity in the DH ipsilateral to complete Freund's adjuvant injection. This elevation of DH Piezo2-IR was also evident in various neuropathic pain models and monosodium iodoacetate knee osteoarthritis pain model, compared with controls. We conclude that (1) the pan neuronal profile of Piezo2 expression suggests that Piezo2 may function extend beyond simply touch or proprioception mediated by large-sized low-threshold mechanosensitive primary sensory neurons; (2) Piezo2 may have functional roles involving sensory processing in the spinal cord, Schwann cells, and skin melanocytes; and (3) aberrant Piezo2 expression may contribute pain pathogenesis.
Lysko, DE;Talbot, WS;
PMID: 36384112 | DOI: 10.1016/j.celrep.2022.111669
The signaling mechanisms neurons use to modulate myelination of circuits in the central nervous system (CNS) are only partly understood. Through analysis of isoform-specific neuregulin1 (nrg1) mutants in zebrafish, we demonstrate that nrg1 type II is an important regulator of myelination of two classes of spinal cord interneurons. Surprisingly, nrg1 type II expression is prominent in unmyelinated Rohon-Beard sensory neurons, whereas myelination of neighboring interneurons is reduced in nrg1 type II mutants. Cell-type-specific loss-of-function studies indicate that nrg1 type II is required in Rohon-Beard neurons to signal to other neurons, not oligodendrocytes, to modulate spinal cord myelination. Together, our data support a model in which unmyelinated neurons express Nrg1 type II proteins to regulate myelination of neighboring neurons, a mode of action that may coordinate the functions of unmyelinated and myelinated neurons in the CNS.
Acta pharmacologica Sinica
Chen, ZJ;Su, CW;Xiong, S;Li, T;Liang, HY;Lin, YH;Chang, L;Wu, HY;Li, F;Zhu, DY;Luo, CX;
PMID: 36460834 | DOI: 10.1038/s41401-022-01024-z
Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.
Nature. 2014 Dec 4;516(7529):121-5.
Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A.
PMID: 25471886 | DOI: 10.1038/nature13980.
The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals1. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive2. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell–neurite complexes3, 4. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron4, 5, 6; however, major aspects of touch sensation remain intact without Merkel cell activity4, 7. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
Zhang M, Wang Y, Geng J, Zhou S, Xiao B.
PMID: 30726728 | DOI: 10.1016/j.celrep.2019.01.056
Touch and mechanical pain represent distinct, but interactive, modalities of mechanosensation. However, the molecular mechanisms underlying these mechanotransduction processes remain incompletely understood. Here, we show that deletion of the mechanically activated and rapidly adapting Piezo2 channel in a portion of the low-threshold mechanoreceptors and a majority of the IB4-positive nociceptors impairs touch but sensitizes mechanical pain in mice. Ectopic expression of the Piezo2 homolog, the intermediately adapting Piezo1 channel, in sensory neurons can sensitize touch in normal mice and rescue defective touch of the Piezo2-knockout mice. Broad expression of Piezo1 in sensory neurons decreases, rather than evokes, mechanical pain responses. Together, our data suggest that Piezo channels can mediate touch and indirectly suppress acute pain. Tuning Piezo-mediated touch sensitivity allows us to recapitulate the inhibitory effect of touch on acute pain in mouse models.
McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG, O'Hara DM, Brotchie JM, Koprich JB, Lozano AM, Kalia LV, Kalia SK
PMID: 32059750 | DOI: 10.1186/s40478-020-0894-0
Parkinson's disease is a progressive neurodegenerative disorder characterised by the accumulation of misfolded ?-synuclein in selected brain regions, including the substantia nigra pars compacta (SNpc), where marked loss of dopaminergic neurons is also observed. Yet, the relationship between misfolded ?-synuclein and neurotoxicity currently remains unclear. As the principal route for degradation of misfolded proteins in mammalian cells, the ubiquitin-proteasome system (UPS) is critical for maintenance of cellular proteostasis. Misfolded ?-synuclein impairs UPS function and contributes to neuronal death in vitro. Here, we examine its effects in vivo using adeno-associated viruses to co-express A53T ?-synuclein and the ubiquitinated reporter protein UbG76V-GFP in rat SNpc. We found that ?-synuclein over-expression leads to early-onset catalytic impairment of the 26S proteasome with associated UPS dysfunction, preceding the onset of behavioural deficits and dopaminergic neurodegeneration. UPS failure in dopaminergic neurons was also associated with selective accumulation of ?-synuclein phosphorylated at the serine 129 residue, which has previously been linked to increased neurotoxicity. Our study highlights a role for ?-synuclein in disturbing proteostasis which may contribute to neurodegeneration in vivo
Noh, YW;Yook, C;Kang, J;Lee, S;Kim, Y;Yang, E;Kim, H;Kim, E;
PMID: 35982261 | DOI: 10.1038/s42003-022-03813-y
IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions. Here we employed a brain-blood barrier (BBB)-penetrant adeno-associated virus (AAV) known as PHP.eB to drive adult IRSp53 re-expression in IRSp53-mutant mice. The adult IRSp53 re-expression normalized social deficits without affecting hyperactivity or anxiety-like behavior. In addition, adult IRSp53 re-expression normalized NMDAR-mediated excitatory synaptic transmission in the medial prefrontal cortex. Our results suggest that adult IRSp53 re-expression can normalize synaptic and behavioral deficits in IRSp53-mutant mice and that BBB-penetrant adult gene re-expression has therapeutic potential.