The Journal of comparative neurology
Karthik, S;Huang, D;Delgado, Y;Laing, JJ;Peltekian, L;Iverson, GN;Grady, F;Miller, RL;McCann, CM;Fritzsch, B;Iskusnykh, IY;Chizhikov, VV;Geerling, JC;
PMID: 35134251 | DOI: 10.1002/cne.25307
Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region. Here, we present the foundation of a developmental-genetic ontology that classifies PB neurons based on their intrinsic, molecular features. By combining transcription factor labeling with Cre fate-mapping, we find that the PB is a blend of two, developmentally distinct macropopulations of glutamatergic neurons. Neurons in the first macropopulation express Lmx1b (and, to a lesser extent, Lmx1a) and are mutually exclusive with those in a second macropopulation, which derive from precursors expressing Atoh1. This second, Atoh1-derived macropopulation includes many Foxp2-expressing neurons, but Foxp2 also identifies a subset of Lmx1b-expressing neurons in the Kölliker-Fuse nucleus (KF) and a population of GABAergic neurons ventrolateral to the PB ("caudal KF"). Immediately ventral to the PB, Phox2b-expressing glutamatergic neurons (some coexpressing Lmx1b) occupy the KF, supratrigeminal nucleus, and reticular formation. We show that this molecular framework organizes subsidiary patterns of adult gene expression (including Satb2, Calca, Grp, and Pdyn) and predicts output projections to the amygdala (Lmx1b), hypothalamus (Atoh1), and hindbrain (Phox2b/Lmx1b). Using this molecular ontology to organize, interpret, and communicate PB-related information could accelerate the translation of experimental findings from animal models to human patients.
Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T, Davis MJ, Turi GF, Li WK, Whitmire MP, Chen Y, Kajs BL, Seidemann E, Priebe NJ, Losonczy A, Zemelman BV.
PMID: 30840900 | DOI: 10.1016/j.celrep.2019.02.011
Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.
Hua, SS;Ding, JJ;Sun, TC;Guo, C;Zhang, Y;Yu, ZH;Cao, YQ;Zhong, LH;Wu, Y;Guo, LY;Luo, JH;Cui, YH;Qiu, S;
PMID: 36842495 | DOI: 10.1016/j.biopsych.2023.02.013
The ventromedial prefrontal cortex (vmPFC) has been viewed as a locus to store and recall extinction memory. However, the synaptic and cellular mechanisms underlying this process remain elusive.We combined transgenic mice, electrophysiological recording, activity-dependent cell labeling, and chemogenetic manipulation to analyze the role of adaptor protein APPL1 in the vmPFC for fear extinction retrieval.We found that both constitutive and conditional APPL1 knockout decreases NMDA receptor (NMDAR) function in the vmPFC and impairs fear extinction retrieval. Moreover, APPL1 undergoes nuclear translocation during extinction retrieval. Blocking APPL1 nucleocytoplasmic translocation reduces NMDAR currents and disrupts extinction retrieval. We further identified a prefrontal neuronal ensemble that is both necessary and sufficient for the storage of extinction memory. Inducible APPL1 knockout in this ensemble abolishes NMDAR-dependent synaptic potentiation and disrupts extinction retrieval, while simultaneously chemogenetic activation of this ensemble rescues the impaired behaviors.Therefore, our results indicate that a prefrontal neuronal ensemble stores extinction memory, and APPL1 signaling supports these neurons to retrieve extinction memory via controlling NMDAR-dependent potentiation.
ACS chemical neuroscience
Dai, D;Li, W;Chen, A;Gao, XF;Xiong, L;
PMID: 35412792 | DOI: 10.1021/acschemneuro.2c00067
The lateral habenula (LHb) is a tiny structure that acts as a hub, relaying signals from the limbic forebrain structures and basal ganglia to the brainstem modulatory area. Facilitated by updated knowledge and more precise manipulation of circuits, the progress in figuring out the neural circuits and functions of the LHb has increased dramatically over the past decade. Importantly, LHb is found to play an integrative role and has profound effects on a variety of behaviors associated with pain, including depression-like and anxiety-like behaviors, antireward or aversion, aggression, defensive behavior, and substance use disorder. Thus, LHb is a potential target for improving pain management and related disorders. In this review, we focused on the functions, related circuits, and neurotransmissions of the LHb in pain processing and related behaviors. A comprehensive understanding of the relationship between the LHb and pain will help to find new pain treatments.
A neural circuit for excessive feeding driven by environmental context in mice
Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9
Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Augustine V, Gokce SK, Lee S, Wang B, Davidson TJ, Reimann F, Gribble F, Deisseroth K, Lois C, Oka Y.
PMID: 29489747 | DOI: 10.1038/nature25488
Neural circuits for appetites are regulated by both homeostatic perturbations and ingestive behaviour. However, the circuit organization that integrates these internal and external stimuli is unclear. Here we show in mice that excitatory neural populations in the lamina terminalis form a hierarchical circuit architecture to regulate thirst. Among them, nitric oxide synthase-expressing neurons in the median preoptic nucleus (MnPO) are essential for the integration of signals from the thirst-driving neurons of the subfornical organ (SFO). Conversely, a distinct inhibitory circuit, involving MnPO GABAergic neurons that express glucagon-like peptide 1 receptor (GLP1R), is activated immediately upon drinking and monosynaptically inhibits SFO thirst neurons. These responses are induced by the ingestion of fluids but not solids, and are time-locked to the onset and offset of drinking. Furthermore, loss-of-function manipulations of GLP1R-expressing MnPO neurons lead to a polydipsic, overdrinking phenotype. These neurons therefore facilitate rapid satiety of thirst by monitoring real-time fluid ingestion. Our study reveals dynamic thirst circuits that integrate the homeostatic-instinctive requirement for fluids and the consequent drinking behaviour to maintain internal water balance.
Frontiers in neuroendocrinology
Beekly, BG;Rupp, A;Burgess, CR;Elias, CF;
PMID: 37149229 | DOI: 10.1016/j.yfrne.2023.101069
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep
Zhang, Z;Beier, C;Weil, T;Hattar, S;
PMID: 34433830 | DOI: 10.1038/s41467-021-25378-w
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep.
Flexible scaling and persistence of social vocal communication
Chen, J;Markowitz, JE;Lilascharoen, V;Taylor, S;Sheurpukdi, P;Keller, JA;Jensen, JR;Lim, BK;Datta, SR;Stowers, L;
PMID: 33790464 | DOI: 10.1038/s41586-021-03403-8
Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.
bioRxiv : the preprint server for biology
Su, Y;Xu, J;Zhu, Z;Yu, H;Nudell, V;Dash, B;Moya, EA;Ye, L;Nimmerjahn, A;Sun, X;
PMID: 36778350 | DOI: 10.1101/2023.02.04.527145
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1â€"4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Kaneko, K;Sato, Y;Uchino, E;Toriu, N;Shigeta, M;Kiyonari, H;Endo, S;Fukuma, S;Yanagita, M;
PMID: 35644281 | DOI: 10.1016/j.kint.2022.04.026
Erythropoietin (Epo) is produced by a subpopulation of resident fibroblasts in the healthy kidney. We have previously demonstrated that, during kidney fibrosis, kidney fibroblasts including Epo-producing cells transdifferentiate into myofibroblasts and lose their Epo-producing ability. However, it remains unclear whether Epo-producing cells survive and transform into myofibroblasts during fibrosis because previous studies did not specifically label Epo-producing cells in pathophysiological conditions. Here, we generated EpoCreERT2/+ mice, a novel mouse strain that enables labeling of Epo-producing cells at desired time points and examined the behaviors of Epo-producing cells under pathophysiological conditions. Lineage -labeled cells that were producing Epo when labeled were found to be a small subpopulation of fibroblasts located in the interstitium of the kidney, and their number increased during phlebotomy-induced anemia. Around half of lineage-labeled cells expressed Epo mRNA, and this percentage was maintained even 16 weeks after recombination, supporting the idea that a distinct subpopulation of cells with Epo-producing ability makes Epo repeatedly. During fibrosis caused by ureteral obstruction, EpoCreERT2/+ -labeled cells were found to transdifferentiate into myofibroblasts with concomitant loss of Epo-producing ability, and their numbers and the proportion among resident fibroblasts increased during fibrosis, indicating their high proliferative capacity. Finally, we confirmed that EpoCreERT2/+-labeled cells that lost their Epo-producing ability during fibrosis regained their ability after kidney repair due to relief of the ureteral obstruction. Thus, our analyses have revealed previously unappreciated characteristic behaviors of Epo-producing cells, which had not been clearly distinguished from those of resident fibroblasts.
Chevée M, Robertson JJ, Cannon GH, Brown SP, Goff LA.
PMID: 29320739 | DOI: 10.1016/j.celrep.2017.12.046
Single-cell RNA sequencing has generated catalogs of transcriptionally defined neuronal subtypes of the brain. However, the cellular processes that contribute to neuronal subtype specification and transcriptional heterogeneity remain unclear. By comparing the gene expression profiles of single layer 6 corticothalamic neurons in somatosensory cortex, we show that transcriptional subtypes primarily reflect axonal projection pattern, laminar position within the cortex, and neuronal activity state. Pseudotemporal ordering of 1,023 cellular responses to sensory manipulation demonstrates that changes in expression of activity-induced genes both reinforced cell-type identity and contributed to increased transcriptional heterogeneity within each cell type. This is due to cell-type biased choices of transcriptional states following manipulation of neuronal activity. These results reveal that axonal projection pattern, laminar position, and activity state define significant axes of variation that contribute both to the transcriptional identity of individual neurons and to the transcriptional heterogeneity within each neuronal subtype.