ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Glia
2022 Nov 05
Osorio, MJ;Mariani, JN;Zou, L;Schanz, SJ;Heffernan, K;Cornwell, A;Goldman, SA;
PMID: 36334067 | DOI: 10.1002/glia.24291
Scientific reports
2022 Mar 30
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Arch Pathol Lab Med.
2016 Nov 01
Dolled-Filhart M, Locke D, Murphy T, Lynch F, Yearley JH, Frisman D, Pierce R, Weiner R, Wu D, Emancipator K.
PMID: 27788043 | DOI: 10.5858/arpa.2015-0544-OA
Proc Natl Acad Sci U S A.
2016 Feb 29
Takase HM, Nusse R.
PMID: Takase HM, Nusse R. | DOI: -
Spermatogonial stem cells (SSCs) fuel the production of male germ cells but the mechanisms behind SSC self-renewal, proliferation, and differentiation are still poorly understood. Using the Wnt target gene Axin2 and genetic lineage-tracing experiments, we found that undifferentiated spermatogonia, comprising SSCs and transit amplifying progenitor cells, respond to Wnt/β-catenin signals. Genetic elimination of β-catenin indicates that Wnt/β-catenin signaling promotes the proliferation of these cells. Signaling is likely initiated by Wnt6, which is uniquely expressed by neighboring Sertoli cells, the only somatic cells in the seminiferous tubule that support germ cells and act as a niche for SSCs. Therefore, unlike other stem cell systems where Wnt/β-catenin signaling is implicated in self-renewal, the Wnt pathway in the testis specifically contributes to the proliferation of SSCs and progenitor cells.
Proc Natl Acad Sci U S A.
2016 Feb 22
Lim X, Tan SH, Yu KL, Lim SB, Nusse R.
PMID: 26903625 | DOI: -
How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.
Cell reports
2023 Jun 13
Sulic, AM;Das Roy, R;Papagno, V;Lan, Q;Saikkonen, R;Jernvall, J;Thesleff, I;Mikkola, ML;
PMID: 37318953 | DOI: 10.1016/j.celrep.2023.112643
Cell reports
2022 Apr 05
Gao, F;Li, C;Danopoulos, S;Al Alam, D;Peinado, N;Webster, S;Borok, Z;Kohbodi, GA;Bellusci, S;Minoo, P;
PMID: 35385750 | DOI: 10.1016/j.celrep.2022.110608
Stem Cells
2022 Jan 19
Figeac, F;Tencerova, M;Ali, D;Andersen, T;Appadoo, D;Kerckhofs, G;Ditzel, N;Kowal, J;Rauch, A;Kassem, M;
| DOI: 10.1093/stmcls/sxab011
Appl Immunohistochem Mol Morphol.
2017 Sep 29
Gafeer MM, Hosny Mohammed K, Ormenisan-Gherasim C, Choudhary F, Siddiqui MT, Cohen C.
PMID: 28968265 | DOI: 10.1097/PAI.0000000000000595
Abstract
BACKGROUND:
Programmed death receptor and programmed death ligand (PD-L1) are immunoregulatory proteins. Nonsmall cell lung cancer bypasses the immune system through the induction of protumorigenic immunosuppressive changes. The better understanding of immunology and antitumor immune responses has brought the promising development of novel immunotherapy agents like programmed death receptor checkpoint inhibitors. The aim of this study was to investigate the expression of PD-L1 in lung adenocarcinoma (ADC), comparing 2 different technologies: immunohistochemistry (IHC) by 2 methods versus RNA in situ hybridization (RISH).
METHODOLOGY:
In total, 20 cases of ADC of the lung and 4 samples of metastatic colon ADC were selected. Evaluation of PD-L1 expression was performed by IHC and RISH. RISH was performed using RNAscope. Both methods were scored in tumor cells and quantified using combined intensity and proportion scores.
RESULTS:
Eight of 20 (40%) lung ADC and 2 of 4 (50%) colon ADC were positive for PD-L1 with Cell Signaling IHC, and 65% lung ADC were positive by Dako IHC (13/20). All 4 cases of colon ADC were negative. When evaluated by RISH, 12 lung ADC (60%) and 1 colon ADC (25%) were PD-L1 positive.
CONCLUSIONS:
RNAscope probes provide sensitive and specific detection of PD-L1 in lung ADC. Both IHC methods (Cell Signaling and Dako) show PD-L1 expression, with the Dako method more sensitive (40% vs. 65%). This study illustrates the utility of RISH and Cell Signaling IHC as complementary diagnostic tests, and Food and Drug Administration approved Dako IHC as a companion diagnostic test.
Acta neuropathologica communications
2023 May 22
Seeker, LA;Bestard-Cuche, N;Jäkel, S;Kazakou, NL;Bøstrand, SMK;Wagstaff, LJ;Cholewa-Waclaw, J;Kilpatrick, AM;Van Bruggen, D;Kabbe, M;Baldivia Pohl, F;Moslehi, Z;Henderson, NC;Vallejos, CA;La Manno, G;Castelo-Branco, G;Williams, A;
PMID: 37217978 | DOI: 10.1186/s40478-023-01568-z
Cell Stem Cell
2018 Nov 29
Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA, Mahmud N, Frankland PW, Kaplan DR, Miller FD.
PMID: - | DOI: 10.1016/j.stem.2018.10.024
Peripheral innervation plays an important role in regulating tissue repair and regeneration. Here we provide evidence that injured peripheral nerves provide a reservoir of mesenchymalprecursor cells that can directly contribute to murine digit tip regeneration and skin repair. In particular, using single-cell RNA sequencing and lineage tracing, we identify transcriptionally distinct mesenchymal cell populations within the control and injured adult nerve, including neural crest-derived cells in the endoneurium with characteristics of mesenchymal precursor cells. Culture and transplantation studies show that these nerve-derived mesenchymal cells have the potential to differentiate into non-nerve lineages. Moreover, following digit tip amputation, neural crest-derived nerve mesenchymal cells contribute to the regenerative blastema and, ultimately, to the regenerated bone. Similarly, neural crest-derived nerve mesenchymal cells contribute to the dermis during skin wound healing. These findings support a model where peripheral nerves directly contribute mesenchymal precursor cells to promote repair and regeneration of injured mammalian tissues.
Commun Biol
2020 Apr 23
Sol�-Boldo L, Raddatz G, Sch�tz S, Mallm JP, Rippe K, Lonsdorf AS, Rodr�guez-Paredes M, Lyko F
PMID: 32327715 | DOI: 10.1038/s42003-020-0922-4
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com