Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (129)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • (-) Remove FOS filter FOS (73)
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • (-) Remove Gad2 filter Gad2 (54)
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (53) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (37) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (11) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (110) Apply Neuroscience filter
  • Development (6) Apply Development filter
  • Metabolism (4) Apply Metabolism filter
  • Sleep (4) Apply Sleep filter
  • Stress (4) Apply Stress filter
  • Autism spectrum disorder (3) Apply Autism spectrum disorder filter
  • Behavior (3) Apply Behavior filter
  • behavioral (3) Apply behavioral filter
  • Cancer (3) Apply Cancer filter
  • Stem Cells (3) Apply Stem Cells filter
  • Addiction (2) Apply Addiction filter
  • Endocrinology (2) Apply Endocrinology filter
  • Exercise (2) Apply Exercise filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Albinism (1) Apply Albinism filter
  • Alcohol Use (1) Apply Alcohol Use filter
  • Alcohol Use disorder (1) Apply Alcohol Use disorder filter
  • Allergy Response (1) Apply Allergy Response filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • CGT (1) Apply CGT filter
  • Chronic Pain (1) Apply Chronic Pain filter
  • Depression (1) Apply Depression filter
  • Developmental (1) Apply Developmental filter
  • Epilepsy (1) Apply Epilepsy filter
  • Gender Bias (1) Apply Gender Bias filter
  • Gut Mirobiome (1) Apply Gut Mirobiome filter
  • Hunger (1) Apply Hunger filter
  • Infant directed behvaior (1) Apply Infant directed behvaior filter
  • Inflammation (1) Apply Inflammation filter
  • Injury (1) Apply Injury filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Neuroscince (1) Apply Neuroscince filter
  • Opioid Consumption (1) Apply Opioid Consumption filter
  • Other: Behavior (1) Apply Other: Behavior filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Obesity (1) Apply Other: Obesity filter
  • Other: Skin (1) Apply Other: Skin filter
  • Photoperiod (1) Apply Photoperiod filter
  • Psychiatry (1) Apply Psychiatry filter
  • Psychology (1) Apply Psychology filter
  • PTSD (1) Apply PTSD filter
  • Social Trauma (1) Apply Social Trauma filter
  • Stem cell (1) Apply Stem cell filter
  • vasopressin (1) Apply vasopressin filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • Publications (129) Apply Publications filter
Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence.

Neuropsychopharmacology.

2018 Nov 02

Centanni SW, Morris BD, Luchsinger JR, Bedse G, Fetterly TL, Patel S, Winder DG.
PMID: 30390064 | DOI: 10.1038/s41386-018-0257-8

Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated in negative affect in both humans and rodents. Further, pharmacologically enhancing eCBs with JZL184 prevents abstinence-induced increases in dBNST neuronal activity, underscoring the therapeutic potential of drugs targeting the brain's eCB system. Next, we used a channelrhodopsin-assisted mapping strategy to identify excitatory inputs to the dBNST that could contribute to CDFA-induced negative affect. We identified the insular cortex (insula), a region involved in regulating interoception, as a dense, functional, endocannabinoid-sensitive input to the dBNST. Using a chemogenetic strategy to locally mimic eCB signaling, we demonstrate that the insula strongly influences CDFA behavioral and BNST neuronal activity. Lastly, we used viral anterograde transsynaptic expression in combination with a Gq-DREADD to selectively recruit dBNST neurons receiving insula projections. Chemogenetic recruitment of these neurons mimicked behavioral and c-fos responses observed in CDFA. Collectively, this study supports a role for the insula-BNST neural circuit in negative affective disturbances and highlights the therapeutic potential of the endocannabinoid system for treating negative affective disorders.

High dose administration of DREADD agonist JHU37160 produces increases in anxiety-like behavior in male rats

Behavioural brain research

2023 Jun 21

Van Savage, J;Avegno, EM;
PMID: 37352979 | DOI: 10.1016/j.bbr.2023.114553

Designer receptors exclusively activated by designer drugs (DREADDs) are a promising tool for analyzing neural circuitry, and improved DREADD-selective ligands continue to be developed. Relative to clozapine-N-oxide (CNO), JHU37160 is a selective DREADD agonist recently shown to exhibit higher blood brain barrier penetrance and DREADD selectivity in vivo; however, relatively few studies have characterized the behavioral effects of systemic JHU37160 administration in animals. Here, we report a dose-dependent anxiogenic effect of systemic JHU37160 in male Wistar and Long-Evans rats, regardless of DREADD expression, with no impact on locomotor behavior. These results suggest that high dose (1 mg/kg) JHU37160 should be avoided when performing chemogenetic experiments designed to evaluate circuit manipulation on anxiety-like behavior in rats.
An mPOA-ARCAgRP pathway modulates cold-evoked eating behavior

Cell reports

2021 Aug 10

Yang, S;Tan, YL;Wu, X;Wang, J;Sun, J;Liu, A;Gan, L;Shen, B;Zhang, X;Fu, Y;Huang, J;
PMID: 34380037 | DOI: 10.1016/j.celrep.2021.109502

Enhanced appetite occurs as a means of behavioral thermoregulation at low temperature. Neural circuitry mediating this crosstalk between behavioral thermoregulation and energy homeostasis remains to be elucidated. We find that the hypothalamic orexigenic agouti-related neuropeptide (AgRP) neurons in the arcuate nucleus (ARC) are profoundly activated by cold exposure. The calcium signals in ARCAgRP neurons display an immediate-response pattern in response to cold stimulation. Cold-responsive neurons in the medial preoptic area (mPOA) make excitatory synapses onto ARCAgRP neurons. Inhibition of either ARCAgRP neurons or ARC-projecting mPOA neurons attenuates cold-evoked feeding, while activation of the mPOA-to-ARC projection increases food intake. These findings reveal an mPOA-ARCAgRP neural pathway that modulates cold-evoked feeding behavior.
Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells

Nat Neurosci.

2017 Jan 23

Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC.
PMID: 28114296 | DOI: 10.1038/nn.4486

Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.

Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex

Nat Neurosci.

2017 Dec 11

Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, Zilionis R, Ratner A, Borges-Monroy R, Klein AM, Sabatini BL, Greenberg ME.
PMID: 29230054 | DOI: 10.1038/s41593-017-0029-5

Activity-dependent transcriptional responses shape cortical function. However, a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease, is lacking. To investigate the breadth of transcriptional changes that occur across cell types in the mouse visual cortex after exposure to light, we applied high-throughput single-cell RNA sequencing. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, thus revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibited inter- and intralaminar heterogeneity in the induction of stimulus-responsive genes. Non-neuronal cells showed clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of the stimulus-dependent transcriptional changes occurring across cell types in the visual cortex; these changes are probably critical for cortical function and may be sites of deregulation in developmental brain disorders.

Postnatal age-differential ASD-like transcriptomic, synaptic, and behavioral deficits in Myt1l-mutant mice

Cell reports

2022 Sep 20

Kim, S;Oh, H;Choi, SH;Yoo, YE;Noh, YW;Cho, Y;Im, GH;Lee, C;Oh, Y;Yang, E;Kim, G;Chung, WS;Kim, H;Kang, H;Bae, Y;Kim, SG;Kim, E;
PMID: 36130507 | DOI: 10.1016/j.celrep.2022.111398

Myelin transcription factor 1 like (Myt1l), a zinc-finger transcription factor, promotes neuronal differentiation and is implicated in autism spectrum disorder (ASD) and intellectual disability. However, it remains unclear whether Myt1l promotes neuronal differentiation in vivo and its deficiency in mice leads to disease-related phenotypes. Here, we report that Myt1l-heterozygous mutant (Myt1l-HT) mice display postnatal age-differential ASD-related phenotypes: newborn Myt1l-HT mice, with strong Myt1l expression, show ASD-like transcriptomic changes involving decreased synaptic gene expression and prefrontal excitatory synaptic transmission and altered righting reflex. Juvenile Myt1l-HT mice, with markedly decreased Myt1l expression, display reverse ASD-like transcriptomes, increased prefrontal excitatory transmission, and largely normal behaviors. Adult Myt1l-HT mice show ASD-like transcriptomes involving astrocytic and microglial gene upregulation, increased prefrontal inhibitory transmission, and behavioral deficits. Therefore, Myt1l haploinsufficiency leads to ASD-related phenotypes in newborn mice, which are temporarily normalized in juveniles but re-appear in adults, pointing to continuing phenotypic changes long after a marked decrease of Myt1l expression in juveniles.
TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice

International journal of molecular sciences

2022 Jan 05

Stoltenborg, I;Peris-Sampedro, F;Schéle, E;Le May, MV;Adan, RAH;Dickson, SL;
PMID: 35008985 | DOI: 10.3390/ijms23010559

The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Lateral Hypothalamic GABAergic Neurons Encode Reward Predictions that Are Relayed to the Ventral Tegmental Area to Regulate Learning.

Curr Biol.

2017 Jul 01

Sharpe MJ, Marchant NJ, Whitaker LR, Richie CT, Zhang YJ, Campbell EJ, Koivula PP, Necarsulmer JC, Mejias-Aponte C, Morales M, Pickel J, Smith JC, Niv Y, Shaham Y, Harvey BK, Schoenbaum G.
PMID: 28690111 | DOI: 10.1016/j.cub.2017.06.024

Eating is a learned process. Our desires for specific foods arise through experience. Both electrical stimulation and optogenetic studies have shown that increased activity in the lateral hypothalamus (LH) promotes feeding. Current dogma is that these effects reflect a role for LH neurons in the control of the core motivation to feed, and their activity comes under control of forebrain regions to elicit learned food-motivated behaviors. However, these effects could also reflect the storage of associative information about the cues leading to food in LH itself. Here, we present data from several studies that are consistent with a role for LH in learning. In the first experiment, we use a novel GAD-Cre rat to show that optogenetic inhibition of LH γ-aminobutyric acid (GABA) neurons restricted to cue presentation disrupts the rats' ability to learn that a cue predicts food without affecting subsequent food consumption. In the second experiment, we show that this manipulation also disrupts the ability of a cue to promote food seeking after learning. Finally, we show that inhibition of the terminals of the LH GABA neurons in ventral-tegmental area (VTA) facilitates learning about reward-paired cues. These results suggest that the LH GABA neurons are critical for storing and later disseminating information about reward-predictive cues.

Claustral neurons projecting to frontal cortex restrict opioid consumption

Current biology : CB

2023 Jun 24

Terem, A;Fatal, Y;Peretz-Rivlin, N;Turm, H;Koren, SS;Kitsberg, D;Ashwal-Fluss, R;Mukherjee, D;Habib, N;Citri, A;
PMID: 37379841 | DOI: 10.1016/j.cub.2023.05.065

The synthetic opioid fentanyl is a major contributor to the current opioid addiction crisis. We report that claustral neurons projecting to the frontal cortex limit oral fentanyl self-administration in mice. We found that fentanyl transcriptionally activates frontal-projecting claustrum neurons. These neurons also exhibit a unique suppression of Ca2+ activity upon initiation of bouts of fentanyl consumption. Optogenetic stimulation of frontal-projecting claustral neurons, intervening in this suppression, decreased bouts of fentanyl consumption. In contrast, constitutive inhibition of frontal-projecting claustral neurons in the context of a novel, group-housed self-administration procedure increased fentanyl bout consumption. This same manipulation also sensitized conditioned-place preference for fentanyl and enhanced the representation of fentanyl experience in the frontal cortex. Together, our results indicate that claustrum neurons exert inhibitory control over frontal cortical neurons to restrict oral fentanyl intake. Upregulation of activity in the claustro-frontal projection may be a promising strategy for reducing human opioid addiction.
α2A-adrenergic receptor activation decreases parabrachial nucleus excitatory drive onto BNST CRF neurons and reduces their activity in vivo.

J Neurosci.

2018 Nov 26

Fetterly TL, Basu A, Nabit BP, Awad E, Williford KM, Centanni SW, Matthews RT, Silberman Y, Winder DG.
PMID: 30478032 | DOI: 10.1523/JNEUROSCI.1035-18.2018

Stress contributes to numerous psychiatric disorders. CRF signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, utilizing Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the co-expression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENTStress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well-tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent co-expression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between NE and CRF, and point to an action by which guanfacine may reduce negative affective responses.

A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling

Transl Psychiatry.

2018 Feb 26

Zhang L, Hernández VS, Swinny JD, Verma AK, Giesecke T, Emery AC, Mutig K, Garcia-Segura LM, Eiden LE.
PMID: 29479060 | DOI: 10.1038/s41398-018-0099-5

The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior.

Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories.

J Neurosci.

2016 Jun 22

Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, Whitaker LR, McPherson KB, Bossert JM, Shaham Y, Hope BT.
PMID: 27335401 | DOI: 10.1523/JNEUROSCI.0140-16.2016

Abstract

In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area.

SIGNIFICANCE STATEMENT:

A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?